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summary Available Codes
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*» last year code (.f90)

¢ first nuclear DFT solver (.f90)

“* k, solver and generalization (.c)
*» the penultimate DFT solver (.f90)
¢ the ultimate DFT solver (.f90)
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Mathematical formulation
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Normal Energy Functionals

Cold atoms
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Nuclear systems:
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Pairing Renormalization
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Lattice representation

d quasiparticle wavefunctions represented on a lattice
 periodic boundary conditions

d N,,N,, N, spatial points

O derivatives computed with FFT

 good description of the relevant DOF for E>0

1 (almost) unique ability to describe correctly
all components of the quasiparticle

wavefunctions




One year ago

Imaginary time step
(using p-h potential)
Time step is
varied (decreasing)

G-S method Dlagonallzatlon.
of the norm matrix

(N - large) (N - smaller)

Construct and solve
BdG equations with a
chosen energy cutoff.

p-h and p-p potentials
are updated

N — number of evolved wave functions




One year ago
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Advantages:

- Much faster convergence (order of magnitude difference between
the first order and the second order method).

- The methods do not diverge even for large time steps.

- The low cost of FFT instead of matrix multiplication.




Poor-man parallelization of the
existing code for (trapped) neutrons

* two-processor run: protons + neutrons worlds (communicators)
e little communication
* limited in the size it can handle

Issues

+FFTW requires the entire function on one
processor

*» distribution of wis. on different processors
would make the orthogonalization &
computation of the HFB matrix complicated



switch gears: discrete variable
representation basis
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Matrix generation

Local terms: (U(7))mn = Undnm

Non-local terms require more attention:
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Current implementations

Start w/ some (educated) guess
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k, solver
(cold-atom gas)

u(z,y, z) = u(z,y) exp(ik. z)
v(z,y, 2) = v(z,y) exp(ik, z)

N,/2+1 eigenvalue problems of
dimension 2 N, N/

Static+TD application (see A.B.)

generalization to axially sysmetric systems
(cylindrical coordinates)

heavy communication / BIG computer (see KJR)



Two Large-Scale Nuclear Solvers

1. One diagonalization (4xN, N N,)

hey —p hyo 0 A Ut Uy
h_. h__ —p —-A 0 u- | _g| u-
0 —A* /.l: — h:_+ —h:__ 'U+ o 'U+

A* 0 —h*, pu—hr_ v_ v_

2. Two consecutive diagonalizations (2xN,N N, +~N, N N, )

( h ) (8 )=<(%) &

E— I 0 0 A Uy Uy K
0 E— I —-A 0 u- | _g| u- B
0 —A*  —(e—p) 0 ve | o
A* 0 0 —(e — p) v_ v_




Nuclear Solver:
Parallel Implementation

Input:
Lattice size/constant, particle numbers, etc
# processors for grid, block size
Potentials/Densities (hfbrad, ev4, ev8, etc.)

MPI_COMM_WORLD

p communicator n commaunicator




Nuclear Solver: Selected Details

R
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processor grid for each communicator

On each communicator (p/n):

< setup/compute the HF/HFB matrix
< diagonalize the HF/HFB matrix

< (construct and diagonalize the
cyclically decomposed pairing matrix)

< reconstruct each wavefunction on all
group processors and compute
densities (involve heavy
communication)

< communication of densities



Performance on a
323 lattice

# of processors: 2x11664
dimension of the Hilbert space: 2x131072

time (s) # instructions fp
h: 0.23 200.01E10 15.96E08
D: 2336.84 985.47E14 138.54E14
SC: 1164.37 424.84E14  380.94E1l2

real 59m6.027s
user Om1.800s

sys Om0.244s Deliverables:

v" Profile ASLDA DFT solver with pairing (27-28)

403 requires all Jaguarpf (XT5) for one iteration/hr (see K.J.R)



Benchmarks

= tested simple solutions: KE only, KE+constant
pairing, etc.

* tested the solutions in the TD code: energy and
number of particle conservation within expected
numerical precision

= good agreement with HFBRAD for spherical
systems



summary

v SLDA solver ready to run

v Connection with the TD-code

v" Deliverables year 4 achieved

v’ Stay tuned for applications (tomorrow)



For Monday

** better I/0 for saving the wavefunctions
% connection with the TDSLDA code



