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The funding

The development of MADNESS is funded by the U.S. Department of Energy, 
Office of Advanced Scientific Computing Research (OASCR) and the division of 
Basic Energy Science, Office of Science, under contract DE-AC05-00OR22725 
with Oak Ridge National Laboratory, by the SciDAC Base Math Program and 
was by SAP in computational chemistry (PI: Fann) and SciDAC BES 
(PI:Harrison).
The application of MADNESS-NDFT to nuclear physics is funded through 
SciDAC UNEDF (PIs: R. Lusk and W. Nazarewicz, co-PI: Fann) by the DOE-
OASCR.
This research was performed in part using 
–

 

resources of the National  Energy Scientific Computing Center which is 
supported by the Office of Energy Research of the U.S. Department of  
Energy under contract DE-AC03-76SF0098, 

–

 

the Center for Computational Sciences at Oak Ridge National Laboratory 
under contract DE-AC05-00OR22725 . 

http://code.google.com/p/m-a-d-n-e-s-s



MADNESS release 1, Jan. 2010

MADNESS v. 1 released in Jan. 2010.
–

 

Guaranteed accuracy with controlled precision
–

 

With examples in nuclear DFT with two-cosh

 

potential, 3-D
–

 

Non-linear Schrodinger equation (1-D version of slda)
–

 

Time-dependent Hartree-Fock

 

and Density Functional Theory 
for molecular density functional theory, 3-D

–

 

Iterative solution of Lippman-Schwinger equation
–

 

Nano-transport with embedded ghost cells and constrained 
optimization

–

 

Integro-differential equation
–

 

Representation over complex and spin-coordinate
–

 

I/O, checkpointing

 

of intermediate terms
–

 

Estimation of errors for smooth and weakly singular solutions



MADNESS release 1, 2010

–

 

CS and Math side
• For nuclear physics, input using HO initial guess
• Representation using adaptive discontinuous pseudo-spectral
• Dynamic Load Balancing
• Boundary conditions

– Dirichlet, Neuman, Robin, Free, User-defined
– Periodic, quasi-periodic

• Examples of time-stepping, explicit and implicit
• Iterative solvers

– GMRES, BiCGStab, Conjugate Gradient, …
• Iterative eigensolver

– Davidson, …
• Output vtk files for graphics



Example of a quasi-particle wave-functions for the 
2-cosh potential with spin-orbit



Outline

Motivation
Recent SLDA and ASLDA results comparing 
–

 

3-D multiresolution

 

methods with no assumption on symmetry
–

 

2-D spline

 

with assumption axial symmetry
–

 

Accuracy and scaling
New solution method for non-linear self-consistent HFB equation
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Background

Most nuclear physics codes are based on the HO basis and spline expansion 
method. Precision not guaranteed in case of weakly-bound or very large 
deformations in 3-D.
Most are not easily parallelizable nor scalable for exascale computing without 
significant rewrite.
2-D coordinate-space Hartree-Fock-Bogoliubov code is based on B-Spline
techniques: HFB-AX
General 3-D coordinate-space HFB is not available.

Developing MADNESS-HFB, adaptive pseudo-spectral based
No assumptions on symmetry, weak singularities and discontinuities

Applications: complex nuclear fission, fusion process.



HFB equation of polarized Fermi system

A general HFB equation

Time-reversal symmetry broken: polarized system, odd-nuclei
3-D: applies to any system with complex geometry shape:fission

Effective mass is density dependent. (similar to the Skyrme DFT)
We are ready to develop a Skyrme-HFB using the zero-boundary condition based 
on MADNESS. 



Recent Progress of MADNESS

Solving A.Bulgac’s SLDA and ASLDA equations for imbalanced Fermi condensates. [A. 
Bugac. PRA 76:040502, PRL 101:215301]

Pairing regularization to avoid cutoff divergent (Bulgac)



Recent Progress of MADNESS

Exterior potential, a deformed trap

Benchmarking is done: densities, eigenvalues, 
occupation numbers (MADNESS and B-spline
methods)
SLDA-MADNESS has
been benchmarked (Feb. 2010)
ASLDA-MADNESS has 
been benchmarked (Mar.2010)
Can treat 100 particles in a deformed trap
need improved parallel diagonalization for 104

particles (in development now)  
need continous spectra for nuclear HFB in 2010
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Self-consistent HFB, SLDA, 10 Particles

Quasiparticle energies and occupation numbers of 10 particles, to 1.e-4 precision
~50 minutes using 400 cores (about 40 iterations), involving 296 eigen-values, on Cray 
XT-5, 12 cores/node (March 2010)

Densities comparison
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Self-consistent HFB and nuclear structures

Precision control ↔ Computing in multiwavelets, if smooth function, can truncate 
expansion to desired precision
Benchmarking   total energy, Fermi energy, quasiparticle energy, occupation numbers

E EFermi Elow Ehigh
walltime (s)  (40 

iterations)

K=7, thresh=1e-3 6.230 1.8801
0.24760
0.32322

5.12213 
0.00000131

834.9

K=8, thresh=1e-4 6.230 1.8801
0.24765
0.32321

5.12215
0.00000145

1590.7

K=9, thresh=1e-5 6.230 1.8801
0.24765
0.32321

5.12215
0.00000149

2818.5

B-splines 6.229 1.8801
0.24781
0.32373

5.12210
0.00000149

2-hours (1 core)



ASLDA multiwavelets and splines, 10 particles



Recent Progress of MADNESS

ASLDA-MADNESS benchmarking:
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ASLDA Tests

More complicated and time-consuming than SLDA
in the calculation of local polarization (ρa

 

/ρb

 

) with guess thresh=1.e-4

Total energy:

 

E(bsp)=19.044 
E(mad)=19.042

10-particles

• Arrows point to regions which

•

 

may not have converged 
sufficiently

•

 

effects of possible due to 
spurious oscillation (Gibbs 
phenomena) resulting from sharp 
cut-offs

•

 

new code should resolve these 
issues
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ASLDA 100 particles In a Deformed Trap
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ASLDA scaling for 100 particles, June 2010

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
1

1 0

1 0 0

se
co

nd
s

c o re s

   S c a la b ility  T e s t
H F B   fo r 1 0 0  p a rtic le s
w ith  1 6 3 2  e ig e n v a lu e s
k = 6 , th re s h = 1 e -4
--------------------------------

 H a m ilto n ia n
 tra n s fo rm
 d e n s itie s
 d if fe re n tia l
 c o n v o lu tio n
 d ia g o n a liza tio n

 

 

Scales to about 2400 cores (just beyond size of eigensystem), prelim

About 17K coefficients per wave-function with 7-8 levels of refinement

Parallel eigensolver interfaces are being developed.



Extreme Deformations, 100 particles

Towards to 105 cold-atoms in an elongated trap

Finite-size effects indicated by experiments!

B-spline

 

calculations: 
extremely slow
(2 weeks, 140 cores)

MADNESS takes 3～4 hours for 100 
particles on 2400 cores in an elongated trap 
to convergence (prelim)

Involving 2000+ eigen-solutions, 
preliminary implementation

Motivation:



Multiwavelets and Fast Methods

Automatic adaptivity for discretization and order of accuracy (“h and p”-
adaptivity) 
–

 

the expansion is adaptively increased where precision is requires (basis is 
expanded, grouped by different support)
• In comparison with adapting a mesh and then increasing polynomial 

basis in the mesh
–

 

Integral and differential operators via multiresolution

 

and multiscale
–

 

Functions, projections between different level of expansions
–

 

Compatible between function and operator calculus
Accurate treatment of singularities
Accurate treatment of higher order derivatives
–

 

Improved adaptive treatment of Gibbs type phenomena
Green’s function (Poisson, Helmholtz, etc.)
–

 

Fast real analysis based O(N log ε), low-separation rank, method
–

 

Accuracy is proportional to 
• Degrees of freedom
• Work (flops)



Representation of Wave-Functions

A 2-D slice of the 3-D support of the 
multiwavelet

 

bases for the 2-cosh potential 
(left) and one of its wave-functions (right).

B-spline Mesh (fixed mesh, focus on 
boundary condition; rectangle box for 
deformation)

MADNESS (each functions has its 
own adaptive pseudo-spectral 
expansion representation)



New algorithm for solving non-linear self-consistent HFB I

1.

 

Given Hamiltonian H, and guess wavefunctions

 

form matrix
With regularization, guess for densities, …

2.

 

Diagonalize

 

to obtain updated and orthogonal wave-functions
3.

 

Update potentials, anomaly density, boundary conditions, 
correlations…using new eigenvalues

 

and eigenfunctions
4.

 

Form and solve the Lippman-Schwinger integral equation by scattering 
methods (approximation expansion in u,a, and G’s)
1.

 

Construction of scattering kernel for each eigenvalue

 

for u’s

 

via 
non-linear optimization

2.

 

Solve for u’s
3.

 

Update potential, densities, BC, correlations, fitting which are

 
functions of u’s

4.

 

Construction of scattering kernel for each eigenvalue

 

for a, via 
non-linear optimization

5.

 

Solve for a’s
5.

 

Check error estimates

,( ) ,i j i jH Hφ φ=< >{ }iφ



New algorithm for solving non-linear self-consistent HFB II

Error estimates
–

 

If converged within tolerance, exit
–

 

If not converged go to step 1.
–

 

If further refinement required and not converged within a certain 
number of iterations
• Set new number of multiwavelets, precision, truncation errors, 

iteration count, …
• Project all variables to new level of subspace
• Goto step 1 on last slide



MADNESS applications in nuclear structures -24-

Solving Nuclear Problems

Example: Solving Schrödinger Equation via Green’s function 
(integral form, Kalos):

Spin-orbit coupling implemented in nuclear physics(2008)

effective mass is density dependent (2010)

out-going boundary condition  (to do…)



Solving Poisson and Helmholtz Equation  Cray XT-5 
1.91B eqns, 10 levels of refinement, accuracy 1.e-10 (8/2009)



High Level Composition in 3-D

• Close to the physics
    

operatorT op = CoulombOperator(k, rlo, thresh);

functionT rho = psi*psi;

double twoe = inner(apply(op,rho),rho);

double pe = 2.0*inner(Vnuc*psi,psi);

double ke = 0.0;

for (int axis=0; axis<3; axis++) {

    functionT dpsi = diff(psi,axis);

    ke += inner(dpsi,dpsi);

}

double energy = ke + pe + twoe;

E 1
2

2 V 2 x 1
x y

2 y dx dy
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Summary

On target is to develop an accurate, scalable, portable 3D nuclear DFT 
solver.

What have done last year:
SLDA and ASLDA benchmark have been done. Tests have been run

 

up 
to 100 particles in deformed trap. Improved parallel scaling.

Work target of this year:

Ready to develop a Skyrme-HFB with zero boundary condition, for a 
system with a few hundreds of nucleons.    

For 1K+ particles, the bottle-neck is the diagonalization

 

step. Interface to 
PeIGS

 

has been done, SCALAPACK to be worked out (integer*8 
interface issue)

Outlook:

 

calculation of extremely large systems; implement of out-going 
boundary condition, size and domain extensivity
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