Naturalness of Energy Density Functionals

Markus Kortelainen

Department of Physics and Astronomy, UT, Knoxville, TN 37996, USA Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

UTK/ORNL: W. Nazarewicz M. Stoitsov **OSU:** R. J. Furnstahl

Skyrme EDF

• Most used EDF in nuclear physics

$$E_{t}^{even} = C_{t}^{\rho} \rho_{t}^{2} + C_{t}^{\tau} \rho_{t} \tau_{t} + C_{t}^{\Delta \rho} \rho_{t} \Delta \rho_{t} + C_{t}^{\nabla J} \rho_{t} \nabla J_{t} + C_{t}^{J} J_{t}^{2}$$

$$C_{t}^{\rho} = C_{t0}^{\rho} + \rho_{0}^{\gamma} C_{tD}^{\rho} , \quad t = 0,1$$

- Parametrized by 12 coupling constants and one power
- Historically Skyrme force was defined in tx-parametrization
- Density dependence included in ρ_t^2 term
- Contains derivatives of density matrices up to second order

Effective Lagrangian

• Each term in effective low-energy Lagrangian is written as

$$g\left[\frac{\psi\psi^{\dagger}}{\Lambda f_{\pi}^{2}}\right]^{l}\left[\frac{\nabla}{\Lambda}\right]^{n}\Lambda^{2}f_{\pi}^{2}$$

- f_{π}^{2} is a pion-decay constant, g is a dimensionless constant close to unity and Λ characterizes energy scale beyond effective Lagrangian
- Standard Skyrme coupling constants are scaled by a factor of

$$S = f_{\pi}^{2(l-1)} \Lambda^{n+l-2}$$

- Isovector coupling constants in natural units are scaled by a factor of 4
- Continuation of Furnstahl & Hackworth, PRC56, 2875
- Natural units scaling applied to 48 Skyrme functionals
 UNEDF Annual Collaboration Meeting, June 21-25, 2010

List of functionals

Indox	Functionals	Catographics	
		Categories	 a) masses of double-magic nuclei
1-2	SKID, SKID	adij	(includes ⁹⁰ Zr. ¹¹⁶ Sn. ¹²⁴ Sn and ¹⁴⁰ Ce)
3	SKIVI CLM*	acergi	used in the fit
4	SKM*	, g j	
5-0 -	SGI, SGII	dej	b) masses of non-double-magic nuclei
7	HFB9	abthi	used in the fit
8 - 9	SI, SII	acdefi	
10	SkA	acdegij	c) charge radii used in the fit
11	m HFB16	a b c f h i	d) single particle energies used in the fit
12	SkT	a b d e g h i	e) symmetric infinite nuclear matter
13 - 16	SLy4-7	a c d e f i	
17 - 18	SkI1-2	a b c d f g i	constrains considered in the fit
19 - 20	SkI3-4	a b c d f g i k	f) asymmetric infinite nuclear matter
21	SkI5	a b c d f g i	constrains considered in the fit
22 - 27	MSk1–6	a b f h i	
28 - 29	SIII, SIV	a c i	g) surface properties (neutron skin, fission
30 - 31	SV, SVI	асіј	barriers etc.) considered in the fit
32 - 33	SLy230a,b	a c d e f i	h) pairing was present in the fit
34 - 39	$E, E_{\sigma}, Z, Z_{\sigma}, R_{\sigma}, G_{\sigma}$	a c d g i	i) come peremetere were fixed in the fit
40	SkP	a b c e f h i	i) some parameters were fixed in the fit
41 - 42	SkO,SkO'	a b c d f g i k	j) parameters extrapolated or fine-tuned
43	SV-min	$a \ b \ c \ d \ g \ h \ k$	from existing force or functional
44	$\mathrm{SkO}_{T^{\prime\prime}}$	i j k	k) functional is an extended functional
45	SkMP	a j	
46 - 47	SkX, SkX_c	a b c d e f	
48	RATP	a d e f i	

Choice of optimal Λ

 One way to obtain optimal Λ is to minimize the deviation of coupling constants from unity ⇒ rmsd fit

UNEDF Annual Collaboration Meeting, June 21-25, 2010

Coupling constants in natural units

CAK RIDGE National Laboratory

Deviation from unity

- Deviation from unity linked in many cases to uncomplete or specific optimization procedure
- Anomalously small $C^{\Delta \rho}_1$ in RATP explained by a focus on volume part of the functional for astrophysical purposes
- Small C^{Δρ}₁ in SkMP comes from mixing SkM* and SkP functionals with only minor adjustment to volume part
- Large C^{Δρ}₁ in SkI1 compared to other SkI functionals due to the lack of isotopic shift data in optimization
- Large C^τ₀ in SV due to artificially imposed zero density dependence
- Small C^τ₀ in SkX results from strong emphasis on single particle data which favors effective mass close to one

Range of coupling constants in natural units

- Naturalness can be used as a guide in future fitting attempts
- Average and RMSD from average for cc's of 48 functionals:

Coupling constants and natural units

- In tx-parametrization similar functionals can have very different looking parameters
- •Natural units give better picture of the functional parameters

tx-parametrization				Coupl. cons.		Nat. units	
	SIII	HFB16		SIII	HFB16	SIII	HFB16
t_0	-1128.75	-1837.23	C_{00}^{ρ}	-423.2813	-688.9613	-0.4767	-0.7759
t_1	395	383.521	C_{10}^{ρ}	268.0781	428.3502	1.2076	1.9295
t_2	-95	-3.41736	C^{ρ}_{0D}	875.0000	720.1875	0.7623	0.7509
t_3	14000	11523	C_{1D}^{ρ}	-875.0000	-571.2513	-3.0493	-2.3825
x_0	0.45	0.4326	C_0^{τ}	44.3750	32.6943	0.6059	0.4464
x_1	0	-0.824106	C_1^{τ}	-30.6250	-3.7499	-1.6726	-0.2048
x_2	0	44.652	$C_0^{\Delta \rho}$	-62.9688	-63.7366	-0.8597	-0.8702
x_3	0	0.689797	$C_1^{\Delta \rho}$	17.0313	-16.4752	0.9301	-0.8998
W_0	120	141.1	$C_0^{\nabla J}$	-90.0000	-105.8250	-1.2288	-1.4449
			$C_1^{\nabla J}$	-30.0000	-35.2750	-1.6384	-1.9265
			C_0^J	0.0000	82.7654	0.0000	1.1300
			C_1^J	0.0000	24.1836	0.0000	1.3208

Conclusions

- Scaling to natural units brings coupling constants close to unity
- Parameter Λ around expected value for optimal rms
- Large deviations from unity can linked to uncomplete or specific optimization procedure in many cases
- Natural units can be used as a guiding principle in future fitting attempts
- Natural units included in massexplorer.org
- Natural units can be also applied to EDF with higher order terms
- For details see: M. Kortelainen, R.J. Furnstahl, W. Nazarewicz, M.V. Stoitsov, arXiv:1005.2552

Optimization

Nuclear Energy Density

Functional

Additional slides

Coupling constants in natural units

UNEDF Annual Collaboration Meeting, June 21-25, 2010

Coupling constants in natural units

•Combining C^{ρ} coupling constants into a one density dependent cc. does not improve results ($\rho_c = 0.16 \text{ fm}^{-3}$)

Range of coupling constants in natural units

- Naturalness can be used as a guide in future fitting attempts
- Average and RMSD from average for cc's of 48 functionals:

