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DME Year 4 Deliverables

• DME  Ex[ρ] from chiral EFT NN + NNN thru NNLO 
delivered to ORNL EDF group
– Mathematica package + Python scripts available to public
– Original NV-DME or PSA-DME options (others easy to implement)
– Implemented in HFTHO and HFBRAD and 1st optimizations begun by 

ORNL group (Stoitsov, Kortelainen)

• Use improved DME to validate against ab-initio
– 1st results obtained for neutron droplets w/Minnesota NN potential
– Beyond HF and more realistic NN + NNN rest of Year 4 and 5

• Year 5 roadmap
– revisit comparison to ab initio for nuclei w/realistic NN + NNN (DME 

improvements + exact Hartree)
– microscopic constraints on short-range non-analytic density dependencies 

(ρ2+γ etc.)
– comparison to OEP for Ex
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DME-related papers completed in Year 4

and 1 Ph.D. thesis (Biruk Gebremariam)
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What could be missing in phenomenological EDFs ?

• Density dependencies too simplistic 

• Isovector components not well constrained

• What’s the connection to many-body forces?

Turn to microscopic many body theory for guidance,
aided by the simplifications enabled by soft RG-evolved
interactions

Simplest idea: Map non-local exchange energy into local
                        EDF (non-trivial density-dependence)
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Density Matrix Expansion Revisited (Negele and Vautherin)

Expand of DM in local operators w/factorized non-locality

Dependence on local densities/currents now manifest

NV, PSA, ...
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(note: u is NOT small)

Similarly for <VNNN> (but trilinear and many more terms...)
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New development: DME for chiral NNN force (N2LO)

• Expect interesting spin-orbit/tensor couplings from TPE 

Empirical EDFs (Skyrme, Gogny,...) spin-orbit coupling is density
independent => appropriate for NN spin-orbit forces (short range)

This is a mismatch since microscopic NNN interactions are long-range
(DME ==>  density dependent J⋅∇ρ couplings)
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Prescriptions for Πn-functions
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Phase space averaging (PSA-DME) (Gebremariam et al. arXiv:0910.4979)

Average the non-locality operator over local momentum
distribution g(R,k) and expand exponentiated gradients

Easy to build in physics associated with surface effects in
finite fermi systems (non-isotropic g(R,k)) 

Crucial to accurately describe spin-vector part of OBDM



Prescriptions for Πn-functions
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Negele and Vautherin (NV-DME)
Truncated Bessel expansion of non-locality operator 
Sufficient for spin-unsaturated nuclei only 

Why it fails:  no phase space averaging (not even over INM) done for 
spin-vector part 



Improved Vector PSA-DME  
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anisotropy of 
g(R,k) in the 
spatial surface
(Bulgac et al.)
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• Inclusion of finite fermi phase space effects crucial for quantitative agreement
• completely parameter-free 

Can now apply modified DME with confidence
to spin-unsaturated systems



VEFT = Vct(Λ) + V1π + V2π + · · ·

Cρτ
t ⇒ Cρτ

t (Λ; Vct) + Cρτ
t [kF (R);Vπ]
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Each  HF DME coupling function splits into 2 terms

1) Skyrme-like coupling constants (contact terms)
2) Nontrivial coupling functions from “universal” pion physics

Including Long Range Chiral EFT in Skyrme-like EDFs 

Etc…

From contact terms in
EFT/RG V’s

From pion exchanges

Suggests a microscopically-improved Skyrme phenomenology

Add pion-exchange couplings to existing Skyrme EDF and refit 
Skyrme constants (mimics higher-order ladder contributions)

Analogous to separation of long- and short-distance Coulomb (J. Drut’s talk)
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Including DME pion couplings in Skyrme 

See Mario/Markus’s talk for details of the 
implementation and restricted “pre-
optimization” fits. 

* 1st paper by ORNL group + MSU & OSU coming soon 

1) Implemented into HFTHO and HFBRAD
2) Stable enough for optimization 
3) Bulk properties ok (as expected)
4) Small but stable improvement over Skyrme

No show stoppers yet! 



Part 2: In-medium SRG
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In-medium similarity renormalization group (IM-SRG)
- new ab-initio method   
- effective interactions See arXiv:1006.3639
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The Similarity Renormalization Group
Wegner, Glazek and Wilson

dHλ

dλ
= [η(λ), Hλ] with η(λ) ≡ dU(λ)

dλ
U†(λ)

Gλ = T ⇒ Hλ driven towards diagonal in k− space

Gλ = PHλP + QHλQ ⇒ Hλ driven to block−diagonal

η(λ) = [Gλ, Hλ]

Unitary transformation via flow equations:

 Engineer η to do different things as λ => 0 

increases “perturbativeness”, accelerates basis expansions, ...

need to evolve NNN (at least) to keep λ independent
A > 2 observables (E. Jurgenson’s talk)

λ ≡ s−1/4
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Normal Ordered Hamiltonians

 0-, 1-, 2-body terms contain some 3NF effects thru
density dependence => Efficient truncation scheme 
for evolution of 3N? 

Normal-order w.r.t. some reference state Φ (e.g., HF) :



lim
s→∞

Γod(s) = 0

〈12|Γod|34〉 = 0 if f12 = f34

dH(s)
ds

= [η(s), H(s)]

Evac(∞) → Egs

fk(∞) → εk (fully dressed s.p.e.)
Γd(∞) → f(k′, k) (Landau q.p. interaction)

H(∞) = Evac(∞) +
∑

fi(∞)N(a†iai) +
1
4

∑
[Γd(∞)]ijklN(a†ia

†
jalak)

η = [f̂ , Γ̂]
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In-medium SRG for Nuclear matter
• Normal order H w.r.t. non-int. fermi sea

• Choose SRG generator to eliminate “off-diagonal” pieces 

• Truncate to 2-body normal-ordered operators “IM-SRG(2)”
- dominant parts of induced many-body forces included implicitly

Microscopic realization of SM ideas: dominant MF + weak A-dependent NNeff

λ ≡ s−1/4
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PNM*

Correlations “adiabatically” summed into H(λ)
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*Neglects ph-channel. See Heiko Hergert’s talk.

Weak cutoff dependence over large range => dominant 3,4,...-body
terms evolved implicitly



η(s) = [H(s), H ! " (s)]

In-medium SRG to diagonalize closed-shell nuclei
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Define “offdiagonal” as terms that don’t annihilate the reference HF state 

HF reference state decouples
from higher npnh states

λ ≡ s−1/4



IM-SRG(2) diagonalization of closed-shell systems
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Comparable to coupled-cluster in closed
shell nuclei.

Similar scaling with number of orbitals
~ N6

Neutron droplet comparisons in rest of year 4
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Can also use IM-SRG(2) to “soften” convergence of MBPT
well before total decoupling achieved

Note the ~ cutoff-independent CC results using H(s). Further
indication that our N-ordered truncation is robust.
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Some observations

1) pp channel + 2 ph channels treated on equal footing (like Parquet 
theory but without the technical problems of energy-dependence, 
poles, etc.) 

2) Intrinsically non-perturbative, and issues of small energy 
denominators, poles, etc. bypassed.

 3) no unlinked diagrams (size extensive, etc.)

4) “3rd-order exact” and similar scaling to coupled cluster (deeper 
connection?)

5) Extensions to open shell possible (derive valence Heff)



Year 4 and 5 roadmap for IM-SRG
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1) Eliminate quasi-particle number changing interactions

 non-perturbatively derive valence shell-model Heff/Oeff
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2) Decouple highly-virtual s.p. orbitals 

Evolved H(∞) doesn’t mix many-body states
that differ in the number of s.p. orbits above 
the chosen cutoff

use to truncate # of basis states for ab-initio calculation
of low-lying states

Year 4 and 5 roadmap for IM-SRG



η = [Q, H(s)] , Q =
∑

i

θ(|εi − εF |− Λ) {a†iai}

Year 4 and 5 roadmap for IM-SRG
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3) Decouple highly-virtual and deeply bound s.p. orbitals 

Evolved H(∞) doesn’t mix many-body states
that differ in the # of s.p. orbits lying within
the cutoff centered on the fermi level

reduce d.o.f. to just a few active orbitals close to the
fermi level (i.e., shell model)



Year 4 and 5 roadmap for IM-SRG
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4) IM-SRG for infinite matter (See Heiko’s talk)

• include particle-hole channel (hard!!)
- is it worth the effort? Folklore about ph-contributions to bulk...

• Use HFB groundstate to N-order w.r.t.
- bypass technical problems of Nambu-Gorkov Green’s functions?


