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Applications of the BIGSTICK CI code!
to 2-species (up/down) fermions at unitarity:!

(1)  General effective interaction!
(2) Center of mass without exact factorization!
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What goes into a shell-model CI calculation 
Configuration-interaction (CI) calculations in a shell-model basis: 

Solve                                      in a Slater determinant basis: 

where each Slater determinant is built from single-particle states with good  
angular momentum j,m (but arbitrary radial wavefunction). 

€ 

ˆ H Ψ = E Ψ

€ 

Ψ = cα
α

∑ α

UNEDF ‐‐ MSU June 2010 

The Hamiltonian is input in second quantization: 

€ 

ˆ H = εa ˆ n a + 1
4 Vabcd ˆ a a

+ ˆ a b
+ ˆ a d ˆ a c∑∑

The single-particle energies and two-body matrix elements are  
computed externally to the CI code and read in as a file of numbers.   

                   The BIG QUESTION: 
What are these numbers? How do we get them? 
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           Introduction: Conquering Empirical Interactions 

Naive use of ab initio interactions fail to describe data. 

1.  “Hard core” makes calculations troublesome. 

2.  Tractable model space is too small. 

3.  Need 3 body forces, but only use 2-body forces. 
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           Introduction: Conquering Empirical Interactions 

One creates a renormalized effective interaction  
which implicitly account for the sums to high-momentum states, 

e.g., Brueckner G-matrices. 

Modern approaches use unitary transformations 

Therefore one often tweaks a renormalized realistic interaction 
in order to make it agree better with data. 

cf Brussaard and Glaudemans, Ch.7 
more recent: Brown and Richter, PRC 74 034315 (2006)  (“USDA”, “USDB”) 
and others... 

A renormalized effective interaction is numerically 
more tractable, but still doesn’t give the right spectrum. 
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           Introduction: Conquering Empirical Interactions 

Therefore one often tweaks a renormalized realistic interaction 
in order to make it agree better with data. 

Given a Hamiltonian H, compute some set of  
levels (over many nuclei)          with energies Eα ; 
let Eα0 be the experimental (target) energies. 

Want to minimize 

€ 

α{ }

€ 

χ 2 = Eα
0 − Eα( )

2

α

∑

€ 

ˆ H → ˆ H + δci
ˆ H i

i
∑Let 

and  

€ 

Eα → Eα + δci
∂Eα

∂cii
∑

€ 

∂Eα

∂ci

= α ˆ H i α

Hellmann-Feynman theorem: 
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           Introduction: Conquering Empirical Interactions 

€ 

∂χ 2

∂δci
= 0

€ 

∂Eα

∂ciα

∑ ∂Eα

∂c j

 

 
  

 

 
  

j
∑ δc j =

∂Eα

∂ci
Eα
0 − Eα( )

α

∑

This has the form   

€ 

BTB c = BTδ
 
E 

€ 

Bαi =
∂Eα

∂ci

Formally the solution is  
  

€ 

 c = BTB( )
−1
BTδ
 
E but 

may be singular or nearly so 

Thus one does a singular value decomposition— 
find the eigenvalues of BTB and truncate. 
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 Part 2:  SVD analysis of random and non-random interactions 

€ 

Bαi =
∂Eα

∂ci

= α ˆ H i α

Let’s review: Given an interaction and a set of states 
{|α > }, one can use the Hellmann-Feynman theory 

to compute the sensitivity of the spectrum to 
perturbations in the Hamiltonian 

eigenvalues of BTB 
(USDB) 
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 Part 2:  SVD analysis of random and non-random interactions 

Is there something special about the nuclear 
interaction?  What about other interactions? 

Suppose we take a random interaction? 

USDB is within the error bars 

UNEDF ‐‐ MSU June 2010 

Johnson and P.G. Krastev, 
PRC 81, 054303 (2010).  
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Interlude:  
What about “realistic” effective nuclear interactions? 

Q:  What does it mean to be “realistic”? 

A:  Match experimental data! 
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Interlude:   What about “realistic” effective nuclear interactions? 

Life cycle of a realistic interaction: 

Choose a form (local, 
contact + gradients,  
meson‐exchange, etc.) 

Fit relative V to 2‐body data:  
phase shifts + deuteron 

Transform from relative 
frame  to lab frame via 
Moshinsky  brackets 

Output two‐body  
matrix  elements 
 V(ab,cd) 

Put into  
many‐body  
calculation 
(CI, CC, etc) 

Good  
agreement? 

YES 

NO 

Publish 

Publish  ? 
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Interlude:   What about “realistic” effective nuclear interactions? 

Life cycle of a realistic interaction: 

Fit relative V to 2‐body data:  
phase shifts + deuteron 

Transform from relative 
frame  to lab frame via 
Moshinsky  brackets 

? 
Here is where one needs to 
“renormalize” the short‐range/
high momentum part of the 
interaction 

Today this renormalization is  
accomplished via unitary 
transformations that 
preserve two‐body data  
(phase shifts, bound states) 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Interlude:   What about “realistic” effective nuclear interactions? 

Some common unitary transformations are  
Okubo-Lee-Suzuki, Vlow-k, and the similarity 
renormalization group (SRG). 

They all have the same goal: soften the short-range/high-p  
behavior while preserving two-body (on-shell) data. In other 
words, they modify the off-shell behavior, which can only 
be seen in many-body (A = 3 and higher) systems. 

There have been some other attempts to choose  
different off-shell behavior, e.g., UCOM, INOY  
and JISP16 interactions.  
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They all have the same goal: soften the short-range/high-p  
behavior while preserving two-body (on-shell) data. In other 
words, they modify the off-shell behavior, which can only 
be seen in many-body (A = 3 and higher) systems. 

€ 

ˆ H eff = ˆ U −1 ˆ H ˆ U = e− ˆ A ˆ H e ˆ A 

Can we choose the best 
generator A of the unitary 

transformation... 
the same way we fitted semi-

empirical interactions? 

Interlude:   What about “realistic” effective nuclear interactions? 
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A Modest Proposal: 

€ 

ˆ H eff = ˆ U −1 ˆ H ˆ U = e− ˆ A ˆ H e ˆ A 

We can expand the antisymmetric operator A 
in a series of “base” operators:  

Then we can find perturbations of the unitary  
transformation                    

€ 

ˆ A = ci
ˆ A i

i
∑

€ 

ˆ H eff ≈ ˆ H + ci[ ˆ H , ˆ A i]
i
∑

Then we compute 

and do SVD as before... 

€ 

Bαi =
∂Eα

∂ci

= α ˆ H , ˆ A i[ ]α

Part 3: Cracking the off-shell degrees of freedom in in “realistic” interactions 
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€ 

ˆ H eff = ˆ U −1 ˆ H ˆ U = e− ˆ A ˆ H e ˆ A 

This is just like the SVD fits to semi-empirical 
interactions such as USDB, GXPF1, etc, except   

USDB etc: work in lab frame, perturb Hamiltonian 

New:  we perturb the generators of the unitary 
transformation in the relative frame  

Part 3: Cracking the off-shell degrees of freedom in in “realistic” interactions 

€ 

Bαi =
∂Eα

∂ci

= α ˆ H , ˆ A i[ ]α
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Sample application: cold atomic gases at unitarity in a harmonic trap 

  

€ 

ˆ H = −


2

2m
∇ i

2 + 1
2 mΩ2ri

2

i
∑ −V0 δ( r i −

i< j
∑  r i)

V0 tuned for infinite scattering length 
(cutoff-dependent) 
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Sample application: cold atomic gases at unitarity in a harmonic trap 

  

€ 

ˆ H = −


2

2m
∇ i

2 + 1
2 mΩ2ri

2

i
∑ −V0 δ( r i −

i< j
∑  r i)Only s-wave channel  

in relative  coordinates 

Use ABF regularization 
Alhassid, Bertsch, Fang, PRL100,  

230401(2008)   
in relative frame with 
harmonic oscillator basis 
up to NħΩ 
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€ 

′ n l ˆ H rel nl

If cutoff at 10ħΩ (q=5) then a  
6x6 symmetric matrix  



Making Effective Interactions More Effective 

Sample application: cold atomic gases at unitarity in a harmonic trap 

Then need to transform from the relative frame to  
the lab frame (also in harmonic oscillator basis) 
using Talmi-Brody-Moshinsky brackets 

So there are two parameters  
for the system: the cutoff  
in the relative frame 
and the number of h.o. shells  
in the lab frame. 

3ħΩ   pf 

2ħΩ  sd 

1ħΩ  p 

0ħΩ  s 

lab frame 
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Sample application: cold atomic gases at unitarity in a harmonic trap 

Use ABF regularization  
with cutoff  of 10ħΩ  
(in relative s-channel). 

20 

Slow convergence  
in CI calculations. 
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Sample application: cold atomic gases at unitarity in a harmonic trap 

Part 3: Cracking the off-shell degrees of freedom in in “realistic” interactions 

€ 

ˆ H eff = ˆ U −1 ˆ H ˆ U = e− ˆ A ˆ H e ˆ A 

In the relative frame, with a 8hΩ  , then H, A, and U are  
all 5 x  5 matrices.  (Then go from relative to lab via Moshinsky). 

There are thus 10 generators of A.  
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Sample application: cold atomic gases at unitarity in a harmonic trap 

Part 3: Cracking the off-shell degrees of freedom in in “realistic” interactions 

Using all generators, fit to g.s. 
energies for N = 3-10 
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starting rms = 2.32 
final rms = 0.25 
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Sample application: cold atomic gases at unitarity in a harmonic trap 

Part 3: Cracking the off-shell degrees of freedom in in “realistic” interactions 

Using only 1 generator (d/dr) (very much like UCOM) 

Fit to A =3, 1-, 0+ 

          A = 4, 0+,1+, 2+ 
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starting rms = 2.32 
final rms = 0.58 
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I have developed a general formalism using unitary transformations  
that (a) preserve desired properties (on-shell matrix elements,  
eigenvalues) and (b) can be fitted to data. 

Preliminary application to a cold atomic gas at unitarity is promising. 

Next step: apply to nuclear systems  
(more complicated, multi-channel; 
not only binding energies, but also spin-orbit 
splitting usually attributed to 3-body forces) 
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Center of mass without exact factorization 

Center-of-mass is an important contamination in nuclear  
structure calculations. 

A theorem (Palumbo, later Lawson) showed that in a  
h.o. basis, a specific truncation (the NhΩ truncation) guarantees 
a system with a translationally invariant interaction can  
decouple relative from c.m. motion. 

However a more “natural” truncation is by maximal orbits:  
this is natural in Hartree-Fock, coupled-cluster, etc. 
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A tale of two truncations 

orbit truncation: all  
excitations 

NhΩ (or energy) truncation: only 
those excitations in noninteracting 
h.o. with energy ≤NhΩ 
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But is the orbit truncation bad? 

Hagen, Papenbrock, and Dean:    in CC, look at < Hcm> 

 Hcm is minimized, only with h.o. frequency different from the basis 

Roth, Gour, and Piecuch: in importance-truncated CI, look also  
at perturbations by adding βHcm; considerable contamination  
in orbital truncation 
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Need to look at  
sensitivity to  
adding  βHcm; 

Work is under 
way for nuclei 


