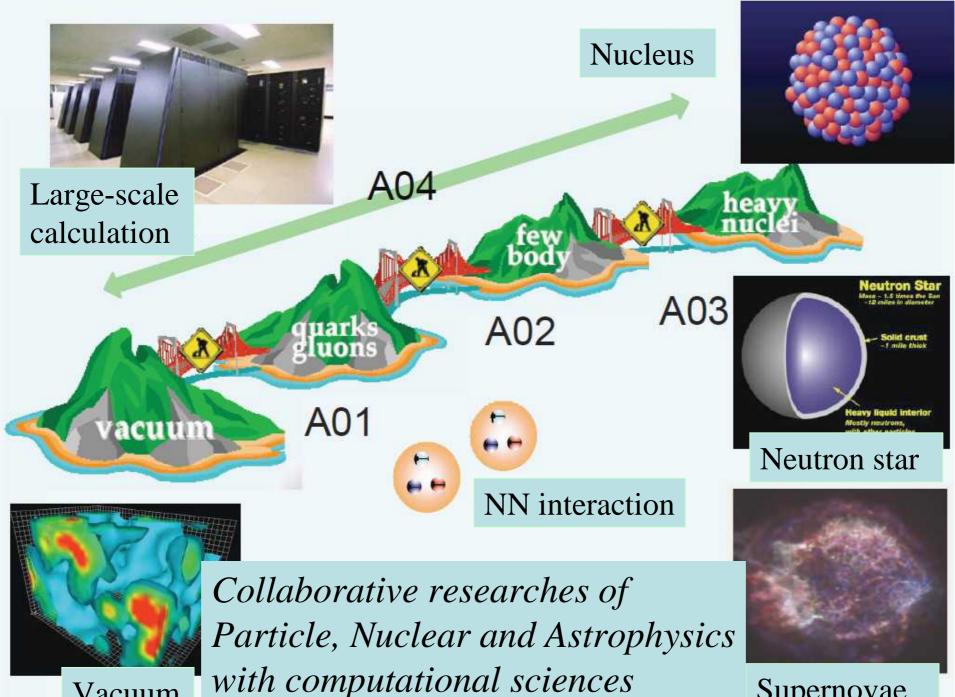
Projects for computational fundamental physics in Japan and TD approaches to nuclear structure/reaction

> Takashi Nakatsukasa RIKEN Nishina Center

Collaborative researches of Particle, Nuclear and Astrophysics with computational sciences

URL: <u>http://bridge.kek.jp/</u> (currently only in Japanese)

- JSPS Grant-in-Aid for Scientific Research on Innovative Areas (2008.12 -- 2013.3)
 Representative: S. Aoki (Univ. Tsukuba)
- A01 Particle Physics
- A02 Nuclear Physics
- A03 Astrophysics
- A04 Computer Sciences



Vacuum

Supernovae

- A01: Structure of vacuum and quark dynamics in QCD [Onogi (YITP)]
- A02: Nuclear structure from quark dynamics [Hatsuda (Tokyo)]
- A03: Explosive phenomena in universe and element synthesis from quark structure and nuclear structure [Suzuki (Tokyo Sci.)]
- A04: Universal algorithms and computer simulations [Matsufuru (KEK)]

A02:

Nuclear structure from quark dynamics

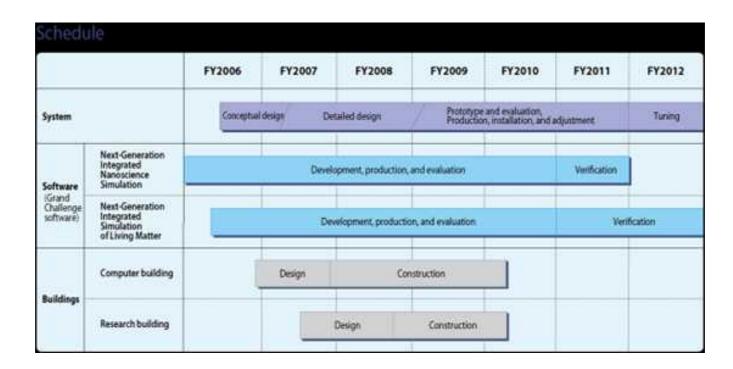
- Univ. Tokyo
 - Hatsuda, Otsuka, Sasaki
- Univ. Tsukuba
 - Aoki, Ishii, Yabana
- RIKEN
 - Hiyama, Nakatsukasa
- Others
 - Nakamura (Hiroshima), Suzuki (Nihon), Takano (Waseda)
- PDs
 - Abe (Tokyo), Ikeda (RIKEN), Nagata (Hiroshima), Sasaki (Tsukuba)

New-generation supercomputer facility

Supercomputer (10 Pflops) are currently under construction in Kobe, Japan.

RIKEN is responsible for the construction.

Room for computers



Selected Major Fields of Applications

- 1. Life science and Medicine
- 2. New materials and energy generation
- 3. Climate and earthquake prediction
- 4. Next-generation manufacturing
- 5. Origin and structure of matter and universe

Ten Groups

- 1. Models for elementary particles and phase transitions in Big Bang [Hashimoto (KEK)]
- 2. Unified understanding on quark dynamics using lattice QCD [Kuramashi (Tsukuba)]
- 3. QCD and hadron structure [Hatsuda (Tokyo)]
- 4. Exotic nuclei from nuclear force [Otsuka (Tokyo)]
- 5. Many-particle simulation for nuclear reactions and element synthesis [Nakatsukasa (RIKEN)]
- 6. Mechnism/Origin of supernovae, gamma-ray burst, and black holes [Shibata (Kyoto)]
- 7. Fundamental processes of magnetic fluid and plasma phenomena in universe [Matsumoto (Chiba)]
- 8. Fundamental processes of formation of stars [Makino (NAO)]
- 9. Fundamental processes of formation of galaxies and giant black holes [Umemura (Tsukuba)]
- 10. Support for massively parallel computing and data sharing management [Boku (Tsukuba)]

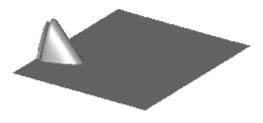
Nuclear Physics Applications

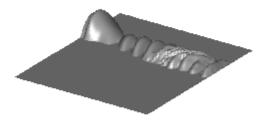
- QCD and hadron structure (Hatsuda; Tokyo)
 - Baryon interaction from lattice QCD
 - Few-body systems
 - Finite-density lattice QCD
- Exotic nuclei from nuclear force (Otsuka; Tokyo)
 - Shell model
 - NCSM calculations
 - Effective interactions
- Reaction simulation of nuclear dynamics and element synthesis (Nakatsukasa; RIKEN)
 - Large-scale simulation for many-nucleon dynamics
 - Low-energy nuclear reaction and many-nucleon resonances
 - High-density nuclear matter and explosive element synthesis

Time-dependent approaches

- Time-dependent Schroedinger equation for few-body models
 - TD wave-packet method for lowenergy nuclear reaction
 - Calculation of strength function with Pauli forbidden states
- TDDFT calculation
 - Real-time TDHF (no pairing)

– Canonical-basis TDHFB





Full TDHFB calculation is computationally demanding.

Possible approximation: HFB \rightarrow HF+BCS

Any instant of time, the state can be written in the canonical form:

$$|\Psi(t)\rangle = \prod_{k>0} \left(u_k(t) + v_k(t)c_k^+(t)c_k^+(t) \right) 0 \rangle$$
 $\rho_k = |v_k|^2, \kappa_k = u_k v_k$

Density matrix and pair tensor are given by

$$\rho_{\mu\nu}(t) = \sum_{k>0} \rho_k(t) \left\langle \left\langle \mu \left| k(t) \right\rangle \right\rangle \left\langle k(t) \left| \nu \right\rangle + \left\langle \mu \left| \overline{k}(t) \right\rangle \right\rangle \left\langle \overline{k}(t) \left| \nu \right\rangle \right\rangle \right\rangle$$
$$\kappa_{\mu\nu}(t) = \sum_{k>0} \kappa_k(t) \left\langle \left\langle \mu \left| k(t) \right\rangle \left\langle \nu \left| \overline{k}(t) \right\rangle - \left\langle \mu \left| \overline{k}(t) \right\rangle \left\langle \nu \left| k(t) \right\rangle \right\rangle \right\rangle$$
Here, $|k(t)\rangle$ and $|\overline{k}(t)\rangle$ are not related by the time reversal, in general.

TDHFB equation in the generalized density matrix

$$i\frac{\partial}{\partial t}R(t) = \begin{bmatrix} H(t), R(t) \end{bmatrix}$$
$$R(t) = \begin{pmatrix} \rho(t) & \kappa(t) \\ -\kappa^*(t) & 1 - \rho^*(t) \end{pmatrix}, \quad H(t) = \begin{pmatrix} h(t) & \Delta(t) \\ -\Delta^*(t) & -h^*(t) \end{pmatrix}$$

Substituting the canonical expression of density and pair tensor, we can find reach a set of simple equations, if we assume that the pair potential is diagonal in the canonical basis.

$$\begin{split} \Delta_{\mu\nu}(t) &= -\sum_{k>0} \Delta_k(t) \Big(\! \big\langle \mu \big| k(t) \big\rangle \! \big\langle \nu \big| \bar{k}(t) \big\rangle \! - \! \big\langle \mu \big| \bar{k}(t) \big\rangle \! \big\langle \nu \big| k(t) \big\rangle \! \Big) \\ \Delta_k(t) &= -\sum_{l>0} \kappa_l(t) \overline{V}_{k\bar{k},l\bar{l}} \end{split}$$

TDHFB equations

$$\begin{split} &i\frac{\partial}{\partial t}|k(t)\rangle = \left(h(t) - \eta_{k}(t)\right)|k(t)\rangle, \ i\frac{\partial}{\partial t}|\bar{k}(t)\rangle = \left(h(t) - \eta_{\bar{k}}(t)\right)|\bar{k}(t)\rangle\\ &i\frac{\partial}{\partial t}\rho_{k}(t) = \kappa_{k}(t)\Delta_{k}^{*}(t) - \kappa_{k}^{*}(t)\Delta_{k}(t)\\ &i\frac{\partial}{\partial t}\kappa_{k}(t) = \left(\eta_{k}(t) + \eta_{\bar{k}}(t)\right)\kappa_{k}(t) + \Delta_{k}(t)\left(2\rho_{k}(t) - 1\right) \end{split}$$

The number of canonical states is similar to the particle number.

Thus, the necessary computational task is similar to that of TDHF.

(In TDHFB, the number of quasi-particle states is much larger than the particle number.)

A schematic (simplified) pairing functional

$$E[\kappa(t)] = \sum_{k,l>0} G_{kl} \kappa_{k}^{*}(t) \kappa_{l}(t)$$

Blocki, Floard, NPA273 (1976) 45.

violates the gauge invariance.

In this case, we must choose the special gauge:

$$\eta_{k}(t) = \varepsilon_{k}(t) = \left\langle k(t) \left| h(t) \right| k(t) \right\rangle \iff \left\langle \frac{\partial k}{\partial t} \right| k(t) \right\rangle = 0$$

$$\begin{split} &i\frac{\partial}{\partial t}|k(t)\rangle = \left(h(t) - \varepsilon_{k}(t)\right)|k(t)\rangle, \ i\frac{\partial}{\partial t}|\bar{k}(t)\rangle = \left(h(t) - \varepsilon_{\bar{k}}(t)\right)|\bar{k}(t)\rangle\\ &i\frac{\partial}{\partial t}\rho_{k}(t) = \kappa_{k}(t)\Delta_{k}^{*}(t) - \kappa_{k}^{*}(t)\Delta_{k}(t)\\ &i\frac{\partial}{\partial t}\kappa_{k}(t) = \left(\varepsilon_{k}(t) + \varepsilon_{\bar{k}}(t)\right)\kappa_{k}(t) + \Delta_{k}(t)\left(2\rho_{k}(t) - 1\right) \end{split}$$

Properties of CB-TDHFB

$$i\frac{\partial}{\partial t}|k(t)\rangle = (h(t) - \varepsilon_{k}(t))|k(t)\rangle$$

$$i\frac{\partial}{\partial t}\rho_{k}(t) = \Delta^{*}(t)K_{k}(t) - \text{c.c.}$$

$$i\frac{\partial}{\partial t}K_{k}(t) = (\varepsilon_{k}(t) + \varepsilon_{\bar{k}}(t))K_{k}(t) + \Delta(t)(2\rho_{k}(t) - 1)$$

$$\rho_k(t) \equiv \left| v_k(t) \right|^2, \quad K_k(t) \equiv u_k(t) v_k(t)$$

•Conserve the particle number and the total energy

- •Conserve the orthonormality of canonical orbitals
- •Reduce to TDHF for =0
- •Its static limit coincides with the HF+BCS

In the small-amplitude limit,

- •Nambu-Goldstone modes appear as the zero-energy modes.
- •The pairing vibrations in the normal phase coincide with the pp- and hh-RPA

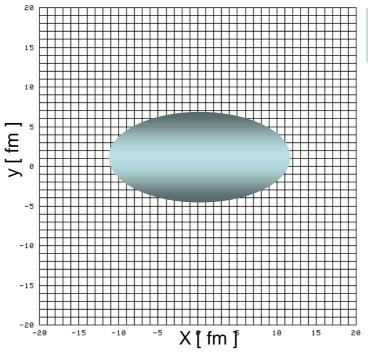
$$\frac{d}{dt} \langle N \rangle = \frac{d}{dt} E_{\text{tot}} = 0$$
$$\frac{d}{dt} \langle k(t) | k'(t) \rangle = 0$$

Skyrme Cb-TDHFB in real space

Time evolution is calculated as a simple Euler's method.

$$i|k(t+2dt)\rangle = i|k(t)\rangle + (h(t+dt) - \eta_k(t+dt))|k(t+dt)\rangle$$
$$i\rho_k(t+2dt) = i\rho_k(t) + (\kappa_k(t+dt)\Delta_k(t+dt) - c.c.)\rho_k(t+dt)$$
$$i\kappa_k(t+2dt) = \cdots$$

3D mesh representation for canonical states



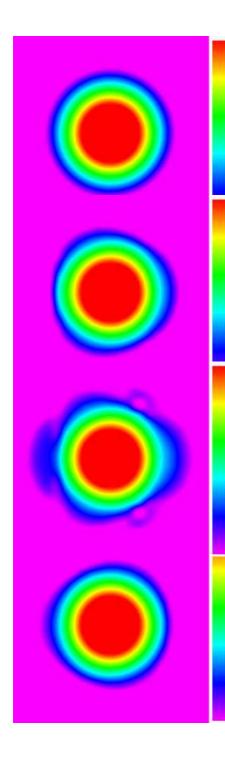
$$\langle \mathbf{r}, \sigma; t | k \rangle = \left\{ \langle \mathbf{r}_i, \sigma; t_n | k \rangle \right\}_{i=1,\cdots,Mr}^{n=1,\cdots,Mt}, \quad k = 1,\cdots,M \ge N$$

Spatial size is a spherical box of radius of 12 fm.

Spatial mesh size is 0.8 fm.

Time step is about 0.2 fm/c

Ebata et al, to be published.



- -4.53333 - -5.06667

- -5.6 - -6.13333 - -6.666667 - -7.2 - -7.73333 - -8.26667

-8.8

- -4.53333 - -5.06667 - -5.6 - -6.13333 - -6.666667 - -7.2 - -7.73333 - -8.26667

> -8.8 -9.33333

- -4.53333 - -5.06667 - -5.6 - -6.13333

- -6.66667 - -7.2 - -7.73333

- -8.26667 - -8.8 - -9.33333 - -9.86667 - -10.4 - -5.06667 - -5.6 - -6.13333 - -6.66667 - -7.2 - -7.2 - -7.73333 - -8.26667 - -8.8

-9.33333

-9.86667 -10.4

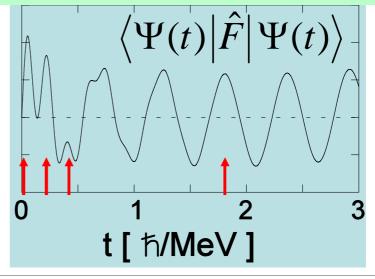
Real-time calculation

1. Weak instantaneous external perturbation

$$V_{\rm ext}(t) = \eta \hat{F} \delta(t)$$

2. Calculate time evolution of $\left< \Psi(t) \middle| \hat{F} \middle| \Psi(t) \right>$

3. Fourier transform to energy domain



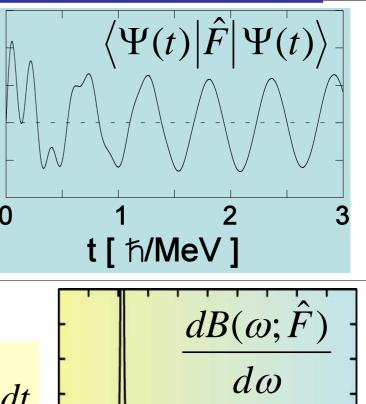
Real-time calculation of linear-response functions

1. Weak instantaneous external perturbation

 $V_{\rm ext}(t) = \eta \hat{F} \delta(t)$

- 2. Calculate time evolution of $\left< \Psi(t) \middle| \hat{F} \middle| \Psi(t) \right>$
- 3. Fourier transform to energy domain

$$\frac{dB(\omega;\hat{F})}{d\omega} = -\frac{1}{\pi\eta} \operatorname{Im} \int \langle \Psi(t) \left| \hat{F} \right| \Psi(t) \rangle e^{i\omega t} dt$$



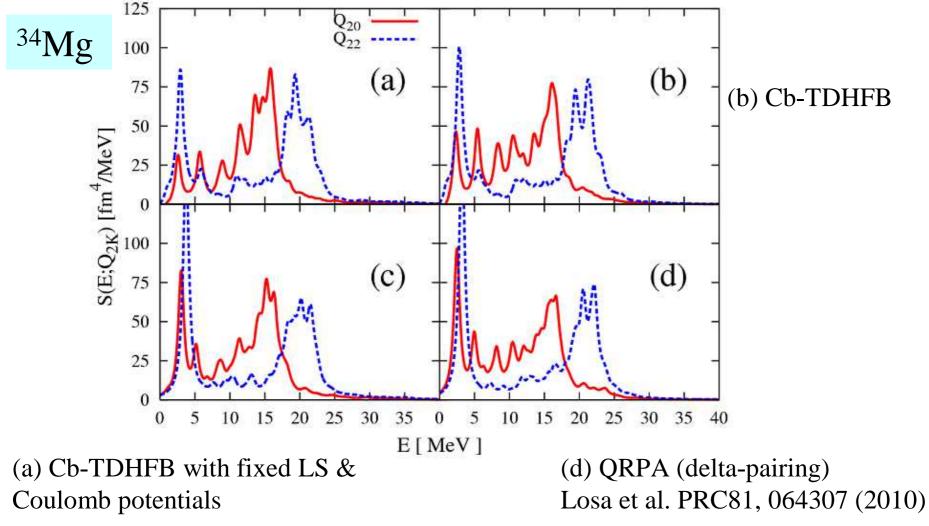
[MeV]

Ground-state properties in Ne and Mg

Skyrme functional of SkM* Pairing functional from Tajima et al, NPA**603**, 23 (1996)

	<u>0</u>						=
	β	γ	Δ_n	Δ_p	$-\lambda_n$	$-\lambda_p$	$\Delta_n = \Delta_p = 0$
20 Ne	0.37	0°	0.0	0.0	13.07	9.19	$\stackrel{n}{\checkmark} \stackrel{p}{\longleftarrow}$
22 Ne	0.37	0°	0.0	0.0	11.03	12.38	$ \qquad \qquad \longleftarrow \beta > 0 $
24 Ne	0.17	60°	0.0	0.74	10.57	13.04	$\beta < 0$
$^{26}\mathrm{Ne}$	0.0	_	0.0	1.00	7.17	14.92	<
$^{28}\mathrm{Ne}$	0.0		0.79	1.01	3.22	17.05	$\longleftarrow \beta = 0$
30 Ne	0.0	-	0.0	1.01	3.79	19.09	←
^{32}Ne	0.36	0°	0.95	0.0	2.16	23.61	←
^{24}Mg	0.39	0°	0.0	0.0	14.12	9.51	- •
^{26}Mg	0.20	54°	0.0	0.86	13.08	11.23	\checkmark $\gamma \neq 0^{\circ}, 60^{\circ}$
$^{28}\mathrm{Mg}$	0.0	220	0.0	1.03	9.21	13.30	< ·
^{30}Mg	0.0	-	1.31	1.03	5.48	15.49	←
^{32}Mg	0.0	—	0.0	1.03	5.83	17.55	←
^{34}Mg	0.37	0°	1.45	0.0	4.12	20.18	<
^{36}Mg	0.33	0°	1.43	0.0	3.21	21.95	▲
^{38}Mg	0.30	0°	1.47	0.0	2.38	23.69	←
$^{40}\mathrm{Mg}$	0.29	0°	0.91	0.0	1.31	25.28	←

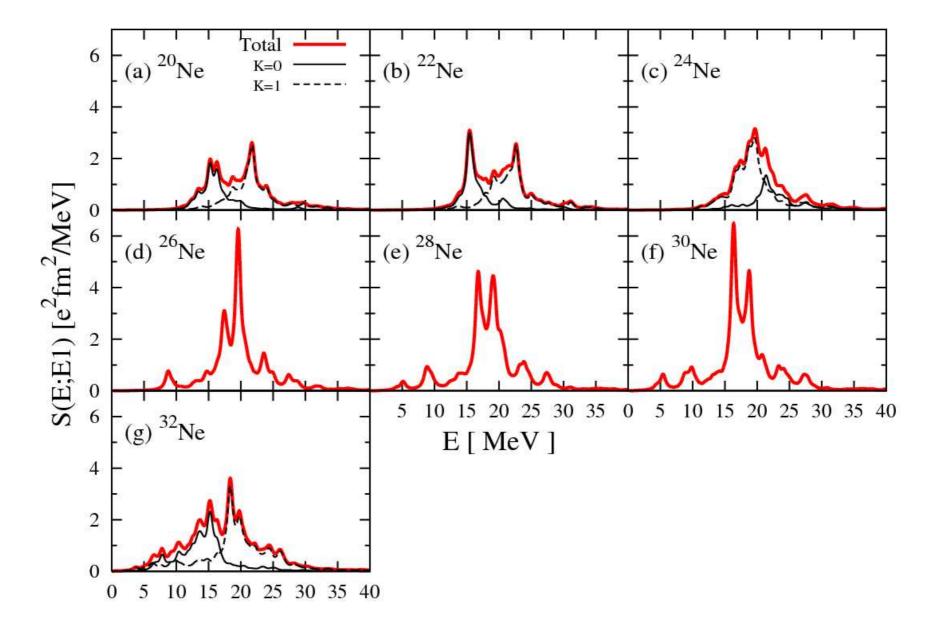
Comparison with QRPA (IS quadrupole strength)



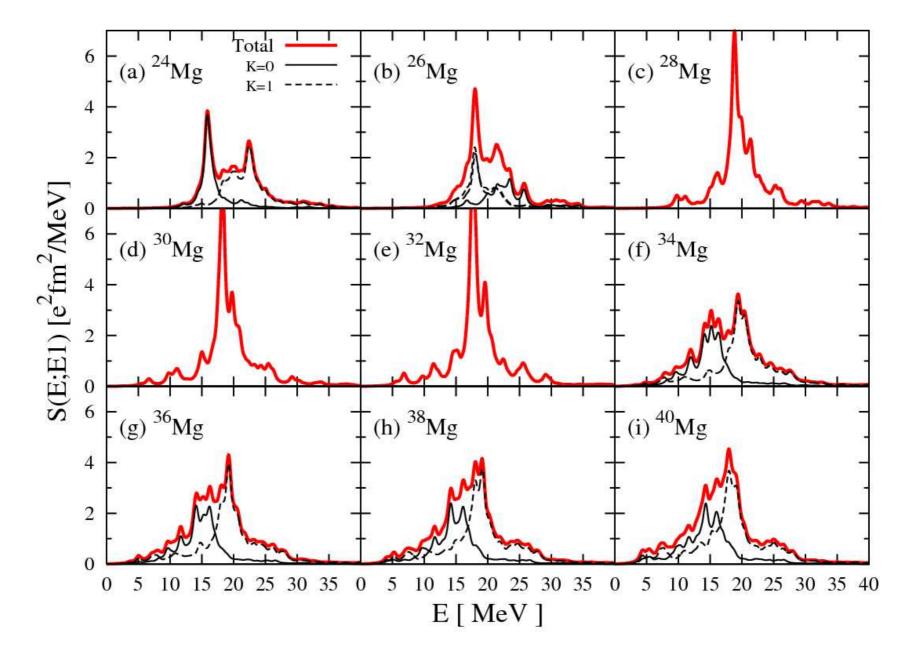
(c) QRPA without residual LS and Coulomb interactions (delta-pairing)

Results well agree with each other, except for height of the lowest peak.

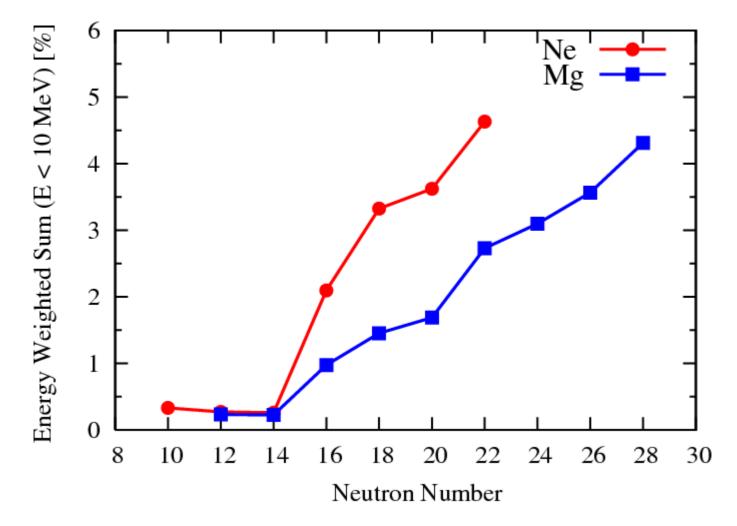
Isovector dipole responses in Ne



Isovector dipole responses in Mg



Low-energy pygmy E1 strength



Low-energy strength suddenly grows up at N=14 \rightarrow 16, which may indicate effects of low-*l* neutron orbitals.

Summary

- Cb-TDHFB equations derived from TDHFB equation of motion
 - Become simple when we approximate the pair potential in a diagonal form in the TD canonical states (analogous to BCS).
 - Computational task is comparable with TDHF.
 - Need a special gauge condition for the simple pairing functional that violates the gauge invariance.
- Linear response with Cb-TDHFB using a simple pairing functional
 - Quantitatively well agree with QRPA
 - E1 strength distribution in Ne and Mg isotopes
 - Pygmy strength appear when neutron starts occupying $s_{1/2}$ orbital.