Astrophysical Equations of State

- Pb Radius Experiment (PREX) first result for neutron radius of ²⁰⁸Pb.
- New astrophysical equations of state:
 - Virial expansion with nucleons, alphas + thousands of heavy nuclei at low densities.
 - Extensive relativistic mean field calculations at high densities.

C. J. Horowitz + **G.** *Shen*, Indiana University, UNEDF, June 2011

Pb Radius Experiment (PREX)

Provides a precise laboratory probe of neutron rich matter.

PREX at Jefferson Laboratory uses parity violating electron scattering to accurately measure the neutron radius of ²⁰⁸Pb.

This has many implications for nuclear structure, astrophysics, atomic parity violation, and low energy tests of the Standard Model.

Spokespersons: K. Kumar, P. Souder, R. Michaels, G. Urciuoli

Parity Violation Isolates Neutrons

- In Standard Model Z⁰ boson couples to the weak charge.
- Proton weak charge is small: $Q_W^p = 1 - 4 \sin^2 \Theta_W \approx 0.05$
- Neutron weak charge is big:

$$Q_W^n = -1$$

- Weak interactions, at low Q², probe neutrons.
- Parity violating asymmetry A_{pv} is cross section difference for positive and negative helicity electrons

$$A_{pv} = \frac{d\sigma/d\Omega_+ - d\sigma/d\Omega_-}{d\sigma/d\Omega_+ + d\sigma/d\Omega_-}$$

 A_{pv} from interference of photon and Z⁰ exchange. In Born approximation

$$A_{pv} = \frac{G_F Q^2}{2\pi\alpha\sqrt{2}} \frac{F_W(Q^2)}{F_{\rm ch}(Q^2)}$$

$$F_W(Q^2) = \int d^3r \frac{\sin(Qr)}{Qr} \rho_W(r)$$

- Coulomb distortions important but accurately calculated.
- PREX measure A_{pv} for 1.05 GeV electrons scattering from ²⁰⁸Pb at 5 degrees. Goal measure A_{pv} to 3%, gives neutron radius R_n to 1% (+/- 0.05 fm).
 - Donnelly, Dubach, Sick first suggested PV to measure neutrons.

PREX in Hall A at JLab

PREX measures how much neutrons stick out past protons (neutron skin).

- First result announced April 30, 2011. Measured parity violating asymmetry: $A_{pv} = +0.6571 \pm 0.0604 \pm 0.0130$ ppm implies: $R_n-R_p=0.34^{+0.15}-0.17$ fm
- Plan to run again to obtain more statistics and reach 1% error +/-0.05 fm for R_n, also second measurement in ⁴⁸Ca very attractive.

²⁰⁸Pb radius and equation of state

- Pressure of neutron matter forces neutrons out against surface tension. A large pressure gives a large neutron radius.
- Measuring R_n in ²⁰⁸Pb constrains the pressure of neutron matter at $\sim 2/3\rho_0 = 0.1 \text{ fm}^{-3}$.

Chiral Effective Field Theory Calculations of Pressure of Neutron Matter vs Density PREX 0.31 fm A. Brown found strong correlation between pressure of neutron 2.5 nn**+3n** matter at a density of forces 0.66 ρ_0 and R_n - R_p in ²⁰⁸Pb $R_{n}-R_{p}=0.23 \text{ fm}$ 2.0 $[10^{33} dyne / cm^{2}]$ (see 2nd vertical scale) Chiral EFT calc. by 1.5 Hebeler et al. with only two n forces are green 0.15 fm 1.0 and brown while blue band shows results Д including 3 neutron forces. 0.5 nn forces PRL**105**, 161102 (2010) only 0.07 fm 0

0

0.2

0.8

1.0

0.6

0.4

 $\rho \left[\rho_0 \right]$

 PREX agrees with results including 3n forces. Hebeler et al. predict R_n-R_p=0.14 to 0.2 fm.

New Astrophysical Equations of State

- For simulations of supernovae (SN), neutron star mergers, black hole formation...
- Need pressure P as function of density n, temperature T, and proton fraction Y_P over large range (calculated at 180,000 points) $0 < Y_P < 0.56$, 0 < T < 80 MeV, $10^{-8} < n < 1.6$ fm⁻³.
- Almost all realistic SN simulations use 1 of 2 EOSs
 - I. Lattimer Swesty (LS) based on crude liquid drop model.
 - 2. H. Shen et al (HShen) based on relativistic mean field model in Thomas Fermi and variational approximations.
- Recently Hempel + Schaffer-Bielich have new EOS based on nuclear statistical model.
- Our EOSs uses extensive relativistic mean field calculations at high densities and virial + statistical model at low densities. EOS tables at <u>http://cecelia.physics.indiana.edu/gang_shen_eos/</u>

Virial + Statistical Model

- At low densities consider nucleons + alphas + thousands of heavy nuclei (A>II).
- Expand pressure in powers of fugacities z_i.

$$\frac{P}{T} = \frac{2}{\lambda_n^3} [z_n + z_p + (z_p^2 + z_n^2)b_n + 2z_p z_n b_{pn}]
+ \frac{1}{\lambda_\alpha^3} [z_\alpha + z_\alpha^2 b_\alpha + 2z_\alpha (z_n + z_p)b_{\alpha n}]
+ \sum_i \frac{1}{\lambda_i^3} z_i \Omega_i,$$
(1)

 $z_i = \exp(\mu_i + E_i)/T = z_p^Z z_n^N e^{E_i/T}$

 Ω_i =partition function for heavy nuclei, E_i is binding E.

2nd Virial Coefficients

$$b_2 = 2^{1/2} \sum_B e^{E_B/T} + \frac{2^{1/2}}{\pi} \int_0^\infty dk \, e^{-E_k/2T} \sum_l (2l+1) d\delta_l(k) / dk \pm 2^{-5/2}$$

- Virials from NN, Nα, and αα elastic scattering phase shifts.
- Note scattering resonance near zero energy gives same result as zero energy bound state.
- For heavy nuclei we use FRDM mass model.
- Virial corrections reproduce near unitary neutron rich gas at higher entropies.

 α - α Elastic Phase Shifts

Composition: nucleons, alphas, heavy nuclei

Relativistic Mean Field Calculations

- Spherical Wigner Seitz boundary conditions: given n_B, Y_p minimize free E wrt cell radius R_s.
- Finite temperature T calc. with very many levels.
- Repeat for large numbers of $n_{\rm B}$, T, $Y_{\rm p}$.
- About 200,000 CPU hours per EOS: different cores work on different n_B, T, Y_p.
- Now have three EOSs available, see G. Shen et al., arXiv:1103.5174
 - Stiff: based on NL3 interaction, maximum NS mass is 2.7
 M_{sun}. --> NL3
 - Soft: based on FSUgold, maximum mass is 1.7 M_{sun}. --> FSU1.7
 - Medium: modify FSUgold at high densities so that maximum mass is 2.1 M_{sun}. --> FSU2.1

Matching of Virial, Hartree (nonuniform) and Uniform Mean Field Free Energies

Matching of Virial and Mean Field Free Energies

NL3 Mean Field Density Profiles

Thermodynamic Consistency

- Numerical noise and interpolation errors can lead to violation of 1st law etc.
- Start with (slightly noisy) entropy S calculated on 180,000 point grid of n_B, T, Y_p.
 - Numerically smooth S subject to dS/dT>0, dS/dn<0.
 - Interpolate S to fine ~2,000,000 point grid.
 Integrate S wrt T to get free energy on fine grid.
 - Differentiate this free *E* to get *P*, chemical potentials...
- Full EOS tables are available: <u>http://cecelia.physics.indiana.edu/</u> <u>gang_shen_eos</u>

[G. Shen et al, arXiv:1103.5174]

Skeleton in closet

Adiabatic Index Γ =dln*P*/dln*n*_B

Liquid-Gas Phase Transition

- In heavy ion collisions, coulomb is not dominant, and one can have a 1st order phase transition.
- In astrophysics, coulomb implies average proton density = electron density. Fraction of system that is liquid is fixed. NO large region with P independent of density.
- 1st order phase transition for LS EOS is artifact of simple approximations.

Neutron star mergers and gravitational waves

Credit: NASA/AEI/ZIB/M. Koppitz and L. Rezzolla

We anticipate the historic detection of GW within a few years with the operation of Advanced LIGO, and VIGRO.

Equation of State Table

- ~2 million lines with 16 numbers per line. Each line has:
 - -9 thermodynamic quantities: T, Y_p, n, F, P, S, μ_n , μ_p , μ_e
 - 7 quantities provide composition information for neutrino interactions: x_n, x_p, x_a, x_h, <A>,
 <Z>, M* (mass fractions for neutrons, protons, alphas, and heavy nuclei, average A, Z of heavy nucleus, effective mass)
- - Skeleton in closet
- Mass fraction of alpha particles, etc., only has meaning in association with routine to calculate neutrino interactions.

Astrophysical Equations of State

Gang Shen

- PREX uses parity violating electron scattering to accurately measure the neutron radius.
 - First result: $R_n R_p(^{208}Pb) = 0.34^{+.15}$ -.17 fm.
 - Many implications for astrophysics...
- New equations of state use virial/ statistical model at low densities and extensive relativistic mean calculations at high densities.
- Supernova nu-sphere described by model independent Virial expansion. *Neutrino response enhanced by clustering*.
- Collaborators: A. Schwenk, E. O'Connor, J. Piekarewicz ... Students: L. Caballero, H. Dussan, J. Hughto, A. Schneider, and G. Shen (did lions share of EOS work).
- Supported in part by DOE.

C. J. Horowitz, Indiana University, UNEDF, June 2011