Annual UNEDF Meeting, MSU, 6/21/2011

Treatment of HFB Resonances

J. Pei, W. Nazarewicz, A. Kruppa

University of Tennessee Oak Ridge National Lab

The Wavelet-based DFT solver, J. PEI

ÏÔʾ×ÀÃæ.scf

HFB Quasiparticle spectrum

HFB Quasiparticle spectrum

□ In the complex k plane

Identify resonance states that have the complex energy: E-ir/2 (widths); and purely scattering states are integrated over the contour.

These resonances are observable in experiments; widths depend very much on the pairing interaction; unique in HFB theory beyond BCS description

HFB Strategy

- Diagonalization on single-particle basis
- Direct diagonalization on box lattice (e.g. B-spline)
 - Very expensive; so many discretized continuum states
- Madness-HFB strategy:
 - ->initial HO basis
 - → ->Hamiltonian matrix
 - ->diagonalization
 - ->new eigenvalues and vectors
 - ->Convolution(update basis)
 - ->box boundary(mask)

Hybrid-HFB strategy:

box solutions+deep-hole resonances+high energy continuum states

Box solutions

- In the box solution, also called L² discretization, the continuum is discretized into finite states, with very good accuracy compared to exact treatments.
- Even with this method the resonance widths can be calculated precisely, compared to the complex scaling method.
- HFB-AX generates very dense quasiparticle spectrum, provides a high resolution for continuum and resonance states.

For example, about 7000 states in a 40×40 fm box.

High energy continuum states

High-energy approximation (local density approximation)

$$u(\mathbf{r}) \rightarrow u(\mathbf{p}, \mathbf{r}) e^{i\hbar\phi(\mathbf{r})}, \ v(\mathbf{r}) \rightarrow v(\mathbf{p}, \mathbf{r}) e^{i\hbar\phi(\mathbf{r})}$$

 This approximation works for HFB-popov equation for Bose gas; works for Bogoliubov de Gennes equations for Fermi gas.
 J. Reidl, A. Csordas, R. Graham, and P.Szepfalusy, Phys. Rev. A 59, 3816 (1999)
 X.J. Liu, H. Hu, P.D. Drummond, Phys. Rev. A 76,043605 (2007)

We follow this approximation for Skyrme HFB.

$$\begin{pmatrix} \frac{\hbar^2 p^2}{2M^*} + V(\boldsymbol{r}) - \lambda \end{pmatrix} u(\boldsymbol{p}, \boldsymbol{r}) + \Delta(\boldsymbol{r})v(\boldsymbol{p}, \boldsymbol{r}) = \epsilon(\boldsymbol{p}, \boldsymbol{r})u(\boldsymbol{p}, \boldsymbol{r})$$
$$(\frac{\hbar^2 p^2}{2M^*} + V(\boldsymbol{r}) - \lambda)v(\boldsymbol{p}, \boldsymbol{r}) - \Delta(\boldsymbol{r})u(\boldsymbol{p}, \boldsymbol{r}) = -\epsilon(\boldsymbol{p}, \boldsymbol{r})v(\boldsymbol{p}, \boldsymbol{r})$$

$$\epsilon(p, r) = \sqrt{\varepsilon_{\rm HF}^2(p, r) + \Delta(r)^2}$$
 quasiparticle spectrum $\varepsilon_{
m HF}(p, r) = rac{\hbar^2 p^2}{2M^*(r)} + V(r) - \lambda$ HF energy

Derivatives of effective mass, spin-orbit terms omitted for high energy states

Continuum to observables

$$\begin{split} \rho_{c}(\mathbf{r}) &= \sum_{p} [1 - \frac{\varepsilon_{\mathrm{HF}}}{\epsilon}] \Theta[\epsilon - E_{c}], \\ \tau_{c}(\mathbf{r}) &= \sum_{p} p^{2} [1 - \frac{\varepsilon_{\mathrm{HF}}}{\epsilon}] \Theta[\epsilon - E_{c}] \\ \tau_{c}(\mathbf{r}) &= \sum_{p} p^{2} [1 - \frac{\varepsilon_{\mathrm{HF}}}{\epsilon}] \Theta[\epsilon - E_{c}] \\ \tau_{c}(\mathbf{r}) &= \frac{M^{*}}{2\pi^{2}\hbar^{2}} \int_{\epsilon_{c}} d\epsilon \left(\frac{\epsilon}{\sqrt{\epsilon^{2} - \Delta^{2}}} - 1\right) \times \\ &\left[\frac{2M^{*}}{\hbar^{2}} \left(\sqrt{\epsilon^{2} - \Delta^{2}} - V(\mathbf{r}) + \lambda\right)\right]^{3/2} \\ \tilde{\rho}_{c}(\mathbf{r}) &= -\sum_{p} v_{p} u_{p} = -\sum_{p} \frac{\Delta}{\epsilon} \Theta[\epsilon - E_{c}] \\ \tilde{\rho}_{c}(\mathbf{r}) &= -\frac{M^{*}\Delta}{2\pi^{2}\hbar^{2}} \times \\ &\int_{\epsilon_{c}} d\epsilon \frac{\sqrt{\frac{2M^{*}}{\hbar^{2}} \left(\sqrt{\epsilon^{2} - \Delta^{2}} - V(\mathbf{r}) + \lambda\right)}}{\sqrt{\epsilon^{2} - \Delta^{2}}} . \end{split}$$

Transform from the *p*-representations to the integral in terms of energy

Continuum to observables

Contributions from 40 to 60 MeV

- Local density approximation
- Box solution from HFB-AX

What we see:

Generally the two methods agrees with each other;

The distributions are very similar for the three kind of densities, and this depends on the pairing potential;

Continuum significantly impacts the *pp* channel.

Hybrid HFB

Test the local-density approximation

Assume the continuum coupling is very weak for deep-hole states

Test for Zn70 neutrons

HFB resonances

General formulas for resonance widths:

Continuum level density

$$\Delta(E) = Tr[\delta(E - H) - \delta(E - H_0)]$$

Hamilton without interaction

With the Green function method:

$$\Delta_l(E) = -\frac{1}{\pi} \operatorname{Im}\{\operatorname{Tr}[\hat{G}_l(E+i0) - \hat{G}_l^0(E+i0)]\}$$

Breit-Wigner shape for resonances

$$\Delta_{l}^{r}(E, E_{r}, \Gamma_{r}) = \frac{1}{\pi} \frac{\Gamma_{r}/2}{(E - E_{r})^{2} + \Gamma_{r}^{2}/4}$$

Smoothing-Fitting method

Occupation probability and continuum level density

$$n(E) = \frac{1}{\pi} \text{Im} \sum_{\sigma} \int d\mathbf{r} G_{11}(\mathbf{r}\sigma, \mathbf{r}\sigma, -E - i\epsilon)$$

H. Oba, M. Matsuo, PRC 80, 02430, 2009

Occupation probability is related to the continuum level density, which corresponds to the Breit-Wigner shape

Smoothing-fitting method

- Straightforward smoothing-fitting method to extract the widths
 - Strutinsky smoothing with a Lorentz function

$$\overline{v^2}(E) = \sum_i \frac{v_i^2}{\Gamma} w \left(\frac{E - E_i}{\Gamma}\right)$$

A.T. Kruppa, K. Arai, PRA 59,3556 (1999).

Advantages: Works for resonances in deformed nuclei; precision can be improved using a large box size

Stabilization Method

- □ Widely used in atomic physics
- Has been applied to single particle resonances
- 3-body resonances (A.Kruppa)
- We applied for the first time to quasiparticle resonances

Stabilization method

The main idea is to get resonance widths from the box-size dependence of quasiparticle energies

Stabilization method

Fermi Golden rule

■ Assume the paring coupling can be treated perturbatively $\Gamma = 2\pi | < u_{0E} |\Delta(r)|\psi_0| > |^2$ $\left[\frac{\hbar^2}{2m}\nabla^2 + V(r)\right] \frac{\psi_0(r)}{r} Y_{lm} = (-E+\lambda) \frac{\psi_0(r)}{r} Y_{lm}$ $\left[\frac{\hbar^2}{2m}\nabla^2 + V(r)\right] \frac{u_{0E}(r)}{r} Y_{lm} = (E+\lambda) \frac{u_{0E}(r)}{r} Y_{lm}$ Solve the scattering wavefunction $u_{0E} = \sqrt{\frac{2m}{\hbar^2 \pi l_r}} (\cos \delta_l F_l(\eta, kr) + \sin \delta_l G_l(\eta, kr))$ Asymptotic form at large distances

A. Bulgac, Preprint FT-194-1980; nucl-th/9907088

However, in some calculations, the FG rule is not precise.

Inapplicability of FG rule

With the volume and surface pairing, two scattering functions *a*, *b* 1.0 1.0 - vol surf 0.8 0.5 0.6 0.0 0.4 -0.5 overlap 0.2 0.0 -1.0 15 10 20 5 10 15 20 25 30 r (fm) R (fm) vol-pairing 1.0 surf.-pairing 0.6 – a – b b 0.5 0.4 overlap overlap 0.2 0.0 0.0 -0.5 -0.2 -1.0--0.4 10 15 5 20 Ô 15 Ó 5 10 20 r (fm) r (fm)

The overlap is too sensitive to the small changes in u_{OE} to give reliable widths, in the case of surface pairing.

Width results

comparison (widths: keV) Neutron Proton Е $\Gamma_{\rm box}$ Γ_{smf} Е $\Gamma_{\rm box}$ Γ_{smf} Γ_{per} Γ_{per} states 38.0751.230.800.9835.1470.640.540.40 $1s_{1/2}$ 28.8013.424.10.0425.4243.222.042.27 $1p_{3/2}$ 26.0436.017.00.1922.8512.041.571.26 $1p_{1/2}$ 22.715.32018.98713.110.60.120.09 $1d_{5/2}$ -Special narrow reonance (1d_{5/2}) Fermi-golden rule doenst work **Resonance-like solution** 10 E+λ for the upper component 0 potential (MeV) -10 It is difficult for the stabilization -E+λ -20 method to calculate widths of extremely narrow resonances -30 -40 5 10 15 20 0 r (fm)

Also happens in neutron states with centrifugal barrier

Weakly-bound Ni isotopes

Weakly-bound Ni isotopes

Resonance widths (keV) of 90Ni					
	states	E_r	Γ_{bcx}	Γ_{smf}	$\Gamma_{GA}[12]$
	$1s_{1/2}$	51.419	-	1.1e-3	1.09e-3
	$1p_{3/2}$	40.588	30.84	20.17	27.28
	$1p_{1/2}$	38.770	32.26	34.67	27.14
	$1d_{5/2}$	29.039	1.31	1.37	0.78
	$1d_{3/2}$	25.017	25.44	23.08	22.57
	$2s_{1/2}$	24.319	50.36	40.87	46.00
	$1f_{7/2}$	17.554	401.79	413.04	397.37
	$2p_{3/2}$	12.538	499.98	471.22	490.56
	$1f_{5/2}$	10.981	672.44	651.12	645.64
	$2p_{1/2}$	10.816	440.76	376.19	404.30
	$1g_{9/2}$	6.519	1.56	0.52	0.81
	$2d_{5/2}$	3.270	221.08	105.17	194.18
	$2d_{3/2}$	2.310	611.50	643.88	560.61
	$1g_{7/2}$	3.348	69.09	75.13	63.61
	$1h_{11/2}$	5.527	162.46	173.66	131.78

□ For example, 1p_{3/2} in Ni isotopes: 25.9 keV (*N*=58), 28.2 keV (*N*=60), 30.8 keV (*N*=62)

Widths increase as nuclei close to the drip line

Summary

Iocal-density approximation:

Works for high energy continuum states.Hybrid HFB strategy can greatly reduce computational costs; will be very useful for optimizing Madness-HFB. It also demonstrates that box solutions have very good precision, and can be used for continuum-QRPA.

Stabilization method:

Produce reliable widths except for very narrow resonances, slightly overestimate the widths by 10%. Provides an alternative way to study continuum and resonances without solving the scattering wavefunctions

Drip-line isotopes:

HFB resonance widths are increasing as nuclei close to drip-lines, which is consistent with that high-energy continuum contributions are also increasing.

Thanks for your attention!