

Progress on NuShellX

Aiming for Petascale

NuShellX Overview
● Is a CI code.
● Calculates matrix elements on the fly.
● Descendant of the OXBASH and NuShell codes

with influences from the Antoine and Nathan
codes.

● Uses a J-scheme. Starts with good-J proton
and neutron bases. Good-J pn basis generated
from vector coupling:

CI Code

Model Spaces

Year 5 Goals
● Understand the scalability barriers in NuShellX

to enable the most effective use of Graphic
Processing Units (GPUs) and leadership-class
machines.

● We decided to pursue leadership-class
machines for now.

● Thus, we implemented an MPI/OpenMP hybrid
code.

Evolution of the Code
● The original NuShellX code is implemented

using OpenMP only.
● The OpenMP-only code doesn't scale well

beyond 16 to 24 cores.
● An MPI augmentation of the existing code was

decided upon.

Development Activity
● Improved installation process for people

building from sources on Unix systems.
● Ported to NERSC environment.
● Worked with NuShellX creator, Bill Rae, to

restructure the code to be better suited to MPI.
● Created a skeleton code outlining MPI

communications.
● Merged Bill Rae's work into skeleton code to

create a MPI/OpenMP hybrid code.

OpenMP Details
● Lanczos iteration used to converge upon

eigenenergies.
● At each iteration, matrix operations performed

for pp, nn, and pn spaces.
● Partitioned into blocks of submatrices.
● One row of submatrices is processed at a time.
● Each OpenMP thread works on a submatrix.

MPI Details
● Master-worker configuration.

● Master sends a row of submatrices to a worker
when that worker is available.

● Master processes a row of submatrices when all
other workers are occupied.

● Master receives results from workers as they
become available.

● Worker OpenMP loop doles out individual
submatrices from a received row to the
OpenMP threads.

Scaling Overview
● MPI/OpenMP hybrid code was tested up to 128

cores (using 8 cores per node) on local HPC
system.

● MPI/OpenMP hybrid code shows improved
performance compared to OpenMP-only code.

● MPI/OpenMP hybrid code still has room for
improvement; we are only now beginning to
wring additional scaling from it. More on that
later.

Benchmarks

Number of Cores Times (s)
1 6052
8 772

16 609
32 354
64 203
128 162

48Cr J=6

About a factor of 1.7 speedup per doubling of # of cores.

How to Improve Scalability
● Reduce MPI payloads. (Some unnecessary

data may be getting transferred.)
● Move from synchronous communications to

asynchronous communications.
● Experiment with MPI one-sided

communications.
● Dedicate communication handler threads on

master process.
● Use distributed master processes and have

them talk to a dedicated master-master.

Conclusions
● MPI/OpenMP hybrid code has been produced

and works.
● A scaling factor of about 1.7 per doubling of

cores has been achieved.
● We are exploring ways to achieve a higher

scaling factor through various techniques.

Questions?

NuShellX Summary
● We met our Year 5 goals of:

● analyzing scalability constraints on the code,
● evaluating options for reaching the petascale level,
● and producing a working MPI/OMP hybrid code.

● The hybrid code has been shown to scale to a
much larger number of cores than the original
OpenMP-only code.

● We have a number of goals for further
improvements to the code. These will be
discussed during the presentation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

