Progress on NuShellX

Aiming for Petascale

NuShellX Overview

Is a Cl code.
Calculates matrix elements on the fly.

Descendant of the OXBASH and NuShell codes
with influences from the Antoine and Nathan
codes.

Uses a J-scheme. Starts with good-J proton
and neutron bases. Good-J pn basis generated
from vector coupling:

| Loy @t |

------------------------------ i :
: Ab Initio Configuration Interaction |
: fill e I | truncated space |
i — |
: = | Effective ||
I ! '
: Many I !
i |
I method i |
|
i |
: global properties I Diagonalization I
spectrosco [Truncation+diagonalization :
[Obse
I scattering ables | Monte Carlo :
[Expt : |
——————————————————— | - :
————————————————————— i E)." l' |
spectroscopic | i
information 1 i

i

1

i

1

i

]

i

\ Nuclear Density
: Functional Theory
1

i

1

|

1

i

1

and Extensions Muclear Energy
Density
Functional Muclear DFT
HFB (self-consistency)
mm breakin

B
X
SciDA
Beieniife [Hacmoers thmagl
Advangal Contputing

100

80

60

40

20

Model Spaces

B 1 ! 1
: ji55pn
: jj4dpn jj45pn
[[L [I 1 : [I [L [I | [L 1 I [L [I L1l [I 1 L [
0 20 40 60 80 100 120 140 160

Sedentific Do thmogh

Year 5 Goals

» Understand the scalability barriers in NuShellX
to enable the most effective use of Graphic
Processing Units (GPUs) and leadership-class
machines.

* \WWe decided to pursue leadership-class
machines for now.

* Thus, we implemented an MPI/OpenMP hybrid
code.

Evolution of the Code

* The original NuShellX code is implemented
using OpenMP only.

 The OpenMP-only code doesn't scale well
beyond 16 to 24 cores.

 An MPIl augmentation of the existing code was
decided upon.

Development Activity

* Improved installation process for people
building from sources on Unix systems.

 Ported to NERSC environment.

 Worked with NuShellX creator, Bill Rae, to
restructure the code to be better suited to MPI.

* Created a skeleton code outlining MPI
communications.

* Merged Bill Rae's work into skeleton code to
create a MPI/OpenMP hybrid code.

OpenMP Details

* Lanczos iteration used to converge upon
eigenenergies.

* At each iteration, matrix operations performed
for pp, nn, and pn spaces.

 Partitioned into blocks of submatrices.
 One row of submatrices is processed at a time.
 Each OpenMP thread works on a submatrix.

MPI Details

* Master-worker configuration.

e Master sends a row of submatrices to a worker
when that worker is available.

 Master processes a row of submatrices when all
other workers are occupied.

« Master receives results from workers as they
become available.

 Worker OpenMP loop doles out individual
submatrices from a received row to the
OpenMP threads.

@:

NSCL

Scaling Overview

 MPI/OpenMP hybrid code was tested up to 128
cores (using 8 cores per node) on local HPC
system.

 MPI/OpenMP hybrid code shows improved
performance compared to OpenMP-only code.

 MP1/OpenMP hybrid code still has room for
iImprovement; we are only now beginning to
wring additional scaling from it. More on that
later.

e

=

Benchmarks

Number of Cores Times (s)
1 6052
8 772
16 609
32 354
64 203
128 162
®Cr J=6

About a factor of 1.7 speedup per doubling of # of cores.

How to Improve Scalability

 Reduce MPI payloads. (Some unnecessary
data may be getting transferred.)

* Move from synchronous communications to
asynchronous communications.

* Experiment with MPI one-sided
communications.

e Dedicate communication handler threads on
master process.

» Use distributed master processes and have

- them talk to a dedicated master-master.
S

NSCL

Conclusions

 MPI/OpenMP hybrid code has been produced
and works.

» A scaling factor of about 1.7 per doubling of
cores has been achieved.

* We are exploring ways to achieve a higher
scaling factor through various techniques.

Questions?

NuShellX Summary

* \We met our Year 5 goals of:

e analyzing scalability constraints on the code,
« evaluating options for reaching the petascale level,
« and producing a working MPI/OMP hybrid code.

* The hybrid code has been shown to scale to a
much larger number of cores than the original
OpenMP-only code.

* \WWe have a number of goals for further
Improvements to the code. These will be
discussed during the presentation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

