Massively Parallel Adaptive 3-D DFT Solver for Nuclear Physics

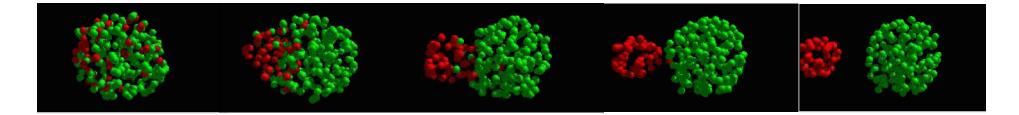
George Fann, Junchen Pei, Judy Hill, Jun Jia, Diego Galindo, Witek Nazarewicz and Robert Harrison Oak Ridge National Lab/University of Tennessee

UNEDF workshop, MSU, East Lansing, MI

June 21-25, 2010

Some background

- Most nuclear physics codes are based on the HO basis expansion method. Precision not guaranteed in case of weakly-bound or very large deformations.
- □ Not suitable for leadership computing, not easily parallelizable
- 2D coordinate-space Hartree-Fock-Bogoliubov code was based on B-Spline techniques: HFB-AX
- **3***D* coordinate-space *HFB* is not available.
 - Developing MADNESS-HFB, adaptive pseudo-spectral based
 - □ No assumptions on symmetry, weak singularities and discontinuities
- Applications: complex nuclear fission, fusion process.



HFB equation of polarized Fermi system

 A general HFB equation (tested with 2-D spline on 2008, 2009, 2010 benchmarks)

$$\begin{array}{cc} h_a(\boldsymbol{r}) - \lambda_a & \Delta(\boldsymbol{r}) \\ \Delta^*(\boldsymbol{r}) & -h_b(\boldsymbol{r}) + \lambda_b \end{array} \right] \left[\begin{array}{c} u_i(\boldsymbol{r}) \\ v_i(\boldsymbol{r}) \end{array} \right] = E_i \left[\begin{array}{c} u_i(\boldsymbol{r}) \\ v_i(\boldsymbol{r}) \end{array} \right]$$

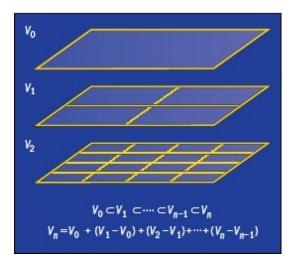
- **Time-reversal symmetry broken: polarized system, odd-nuclei**
- We are testing a 3-D Skyrme-HFB.
- 3D Skyrme: applies to any system with complex geometry shape:fission

$$h_a = -\frac{\hbar^2}{2m} \nabla \cdot (\nabla \alpha_a) + U_a + V_{\text{ext}}$$

 <u>Effective mass is density dependent</u>, with spin-orbit, Poisson solver for coulomb potential.

Mathematics

Multiresolution



Approximation using Alpert's multiwavelets

Function represented by 2 methods, spanning same approximation space:

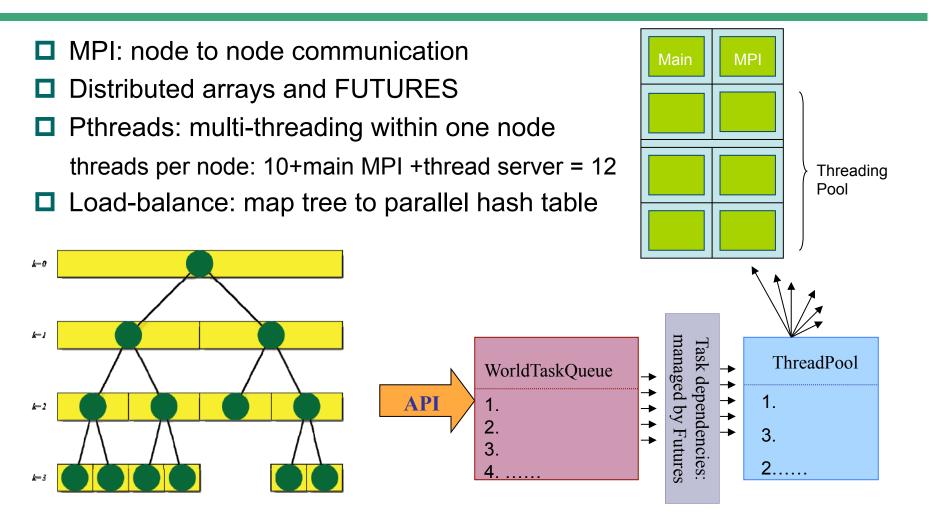
- 1. scaling function basis
- 2. multi-wavelet basis

$$f^{n}(x) = \sum_{l=0}^{2^{n}-1} \sum_{i=0}^{k=1} s_{il}^{n} \phi_{il}^{n}(x)$$
$$f^{n}(x) = \sum_{i=0}^{k-1} s_{i0}^{0} \phi_{i0}^{0}(x) + \sum_{n=0\dots} \sum_{l=0}^{2^{n}-1} \sum_{i=0}^{k=1} \frac{d_{il}^{n} \psi_{il}^{n}(x)}{d_{il}^{n} \psi_{il}^{n}(x)}$$

Low-separation rank: (e.g., optimized approx of Green functions with Gaussians: Beylkin-Mohlenkamp, Beylkin-Cramer-Fann-Harrison, Harrison)

$$f(x_{1,...,x_{n}}) = \sum_{l=1}^{m} \sigma_{l} \prod_{i=1}^{m} f_{i}^{(l)}(x_{i}) + O(\epsilon)$$
$$\|f_{i}^{(l)}\|_{2} = 1 \qquad \sigma_{l} > 0$$

Parallel computing strategy



Self-consistent HFB

Initial Wavefunctions(u, v): deformed HO functions+random gauss

➤Construct Hamiltonian: H(i, j);

time consuming, quadrature, L2-inner product

Diagonalization: Hx=eBx; big problem for large system

(Parallel diag added)

Transform from coefficients to wfs; used to be very time consuming

>Improve approximations by applications of BS Helmholtz kernel:

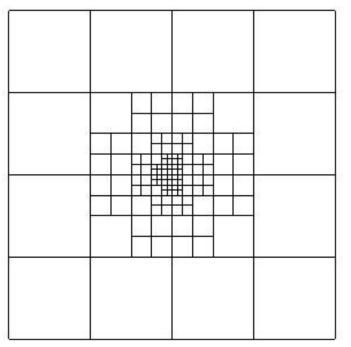
```
u_new=apply(kernel, u), v_new=apply(kernel, v),
```

>Iteration until convergence: if error is small

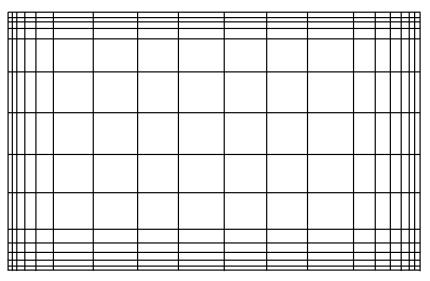
error = norm(u_new-u)+norm(v_new-v)

Adaptive Representation of Quasi-Particle Wave Functions

MADNESS mesh



B-spline Mesh (focus on boundary condition; rectangle box for deformation)

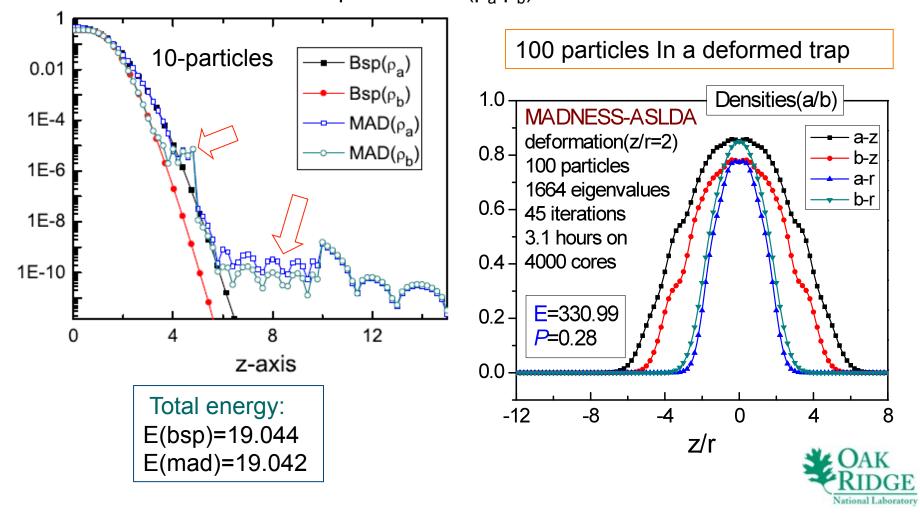


Fixed mesh, not efficient

A 2-D slice of the 3-D support of the multiwavelet bases for the 2-cosh potential (left) and one of its wave-functions (right).

ASLDA Tests (from summer 2010)

• More complicated and time-consuming than SLDA in the calculation of local polarization (ρ_a/ρ_b) with thresh=1.e-4



Capabilities (recent additions)

Addition of parallel iterative complex Jacobi Hermitian diagonalizer

full 64 bit addressing, thread safe (bypassing problems with 32 bit BLACS/Scalapack)

fully distributed data

Boundary conditions: Dirichlet, Neumann, Robin, quasi-periodic, free, asymptotic, mixed : 1-6D for derivatives

Fast bandlimited tranformations (e.g. multiwavelets to/from FFT, JCP 2010)

New C++ standard compatibility (icc, gcc, pgcc)

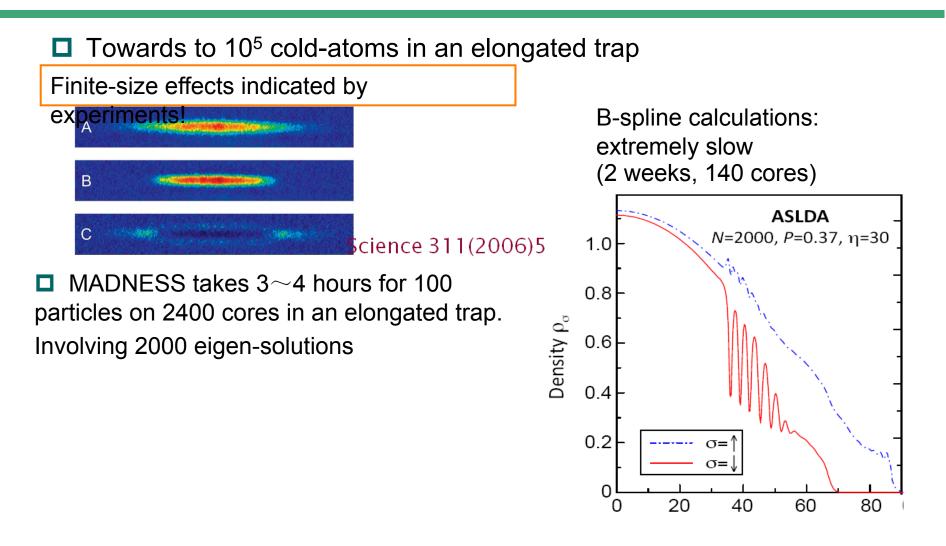
Portable to PCs, Macs, IBM BGL, Cray, clusters

In SVN with autoconf, configure, ...

http://code.google.com/p/m-a-d-n-e-s-s/

Spin-orbit hamiltonian, nonlinear Schrodinger, molecular DFT, TDSE examples available in examples directory. Please ask us for HFB DFT code after this summer.

To extremely deformations (2010)



To extremely deformations (2010)

Towards to 10 ⁵ cold-atoms in an elongated trap
Finite-size effects indicated by
experiments!
B
C C Science 311(2006)503
 deformation in z-direction 1/50. particle 1000 particles -> 10^5 wave fns

u ecut = 20

MADNESS: High-level composition

 Coding composition is close to the physics, example with h=m=1 (chemist notation)

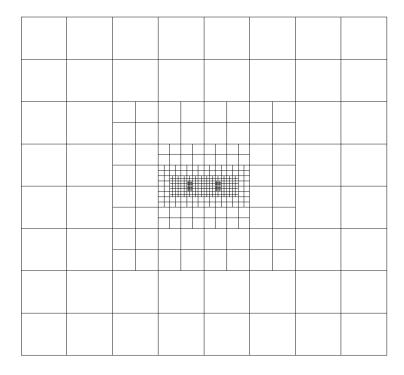
•
$$\mathbf{E} = \left\langle \psi \left| -\frac{1}{2} \nabla^2 + \mathbf{V} \right\rangle \psi + \int \psi^2(\mathbf{x}) \frac{1}{|\mathbf{x} - \mathbf{y}|} \psi^2(\mathbf{y}) d\mathbf{x} d\mathbf{y} \right\rangle$$

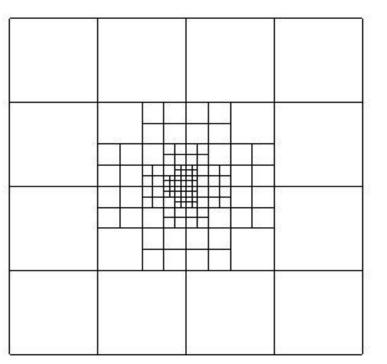
- operatorT op = CoulombOperator(k, rlo, thresh);
- functionT rho = psi*psi;
- double twoe = inner(apply(op,rho),rho);
- double pe = 2.0*inner(Vnuc*psi,psi);
- double ke = 0.0;
- for (int axis=0; axis<3; axis++) {
- functionT dpsi = diff(psi,axis);
- ke += inner(dpsi,dpsi);
- }
- double energy = ke + pe + twoe;

CAK RIDGE National Laboratory

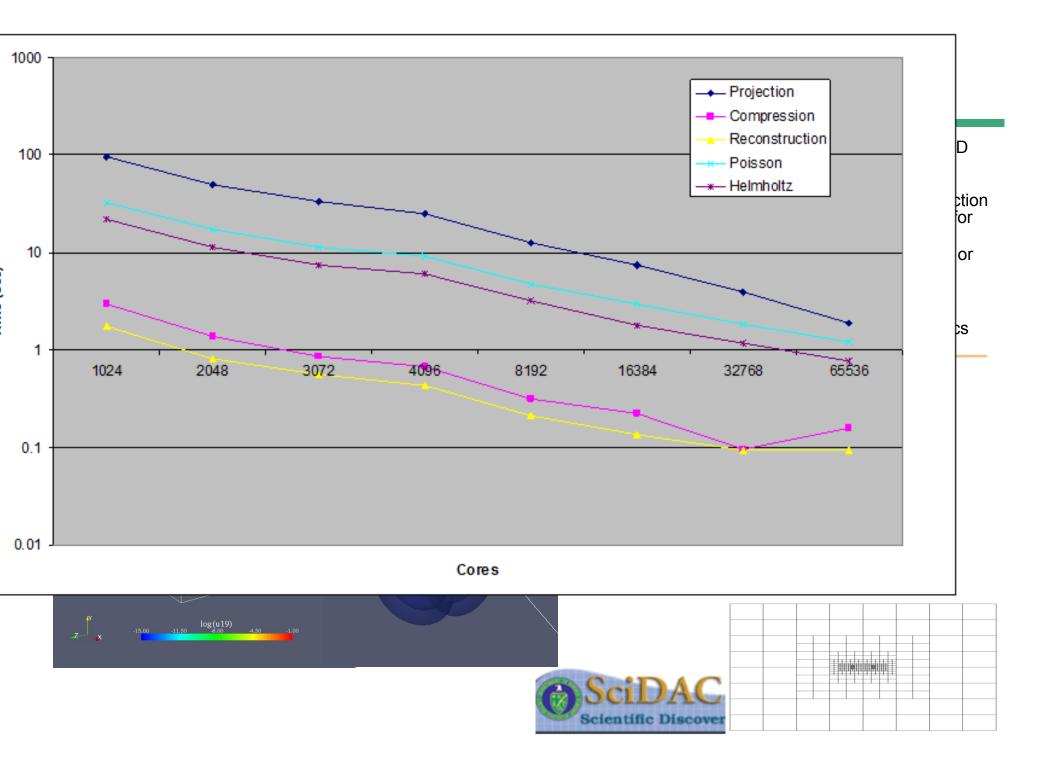
MADNESS 2009

Adaptive Representation of Support of Wave-Functions





A 2-D slice of the 3-D support of the multiwavelet bases for the 2-cosh potential (left) and one of its wave-functions (right).



Summary

Target is to develop an accurate, scalable, portable 3D nuclear DFT solver.

What have done this year:

- 1) Hybrid HFB test for continuum
- 2) HFB solvers

A. Reproduced SLDA/ASLDA from last year and compared well with 2-d spline (3 digits) (~2K lines)

B.Skyrme (testing with fully 3-D, SKM* interaction) (~3K lines)

Work target:

Outlook: calculation of large deformed systems, ASLDA (20K wavefunctions), each wave function has 7+ levels of refinement (8^7 boxes), 18^3 basis functions per box, 8^7, ~12B unknowns for 1-e5 precision. For Skyrme test, 10K quasi-particle wave-functions (4 components+proton+neutron, with broken time-reversal symmetry)

Debugging problem on Jaguarpf at ORNL at 20K-120K cores

Solving nuclear problems

$$\begin{pmatrix} -\frac{1}{2}\nabla^2 + V \end{pmatrix} \Psi = E\Psi$$

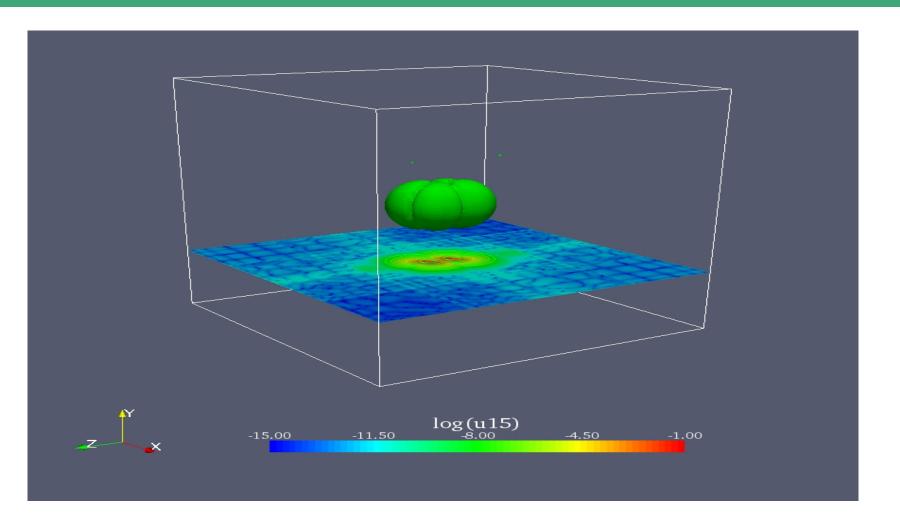
$$\Psi = -2\left(-\nabla^2 - 2E\right)^{-1}V\Psi$$

$$= -2G^*\left(V\Psi\right)$$

$$(G^*f)(r) = \int ds \frac{e^{-k|r-s|}}{4\pi |r-s|}f(s) \text{ in } 3D ; k^2 = -2E$$

- Spin-orbit coupling implemented in nuclear physics(2008)
- effective mass is density dependent (2010)
- out-going boundary condition (to do...)

Graphics Capability: generate VTK



The 15-th wave-function for the 2-cosh potential with spin-orbit

