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Some background

OO Most nuclear physics codes are based on the HO basis expansion
method. Precision not guaranteed in case of weakly-bound or very
large deformations.

O Not suitable for leadership computing, not easily parallelizable

O 2D coordinate-space Hartree-Fock-Bogoliubov code was based on B-
Spline techniques:

O 3D coordinate-space HFB is not available.
O Developing , adaptive pseudo-spectral based
O No assumptions on symmetry, weak singularities and discontinuities

O Applications: complex nuclear fission, fusion process.
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HFB equation of polarized Fermi system

o A general HFB equation (tested with 2-D spline on 2008, 2009, 2010
benchmarks)

ha(r) — Aq A(r) ] [ ui(r) ] _n [ u(r) ]
A*(r)  —hp(r) + A | | vilr) | T | v

o Time-reversal symmetry broken: polarized system, odd-nuclei

o We are testing a 3-D Skyrme-HFB.

o 3D Skyrme: applies to any system with complex geometry
shape:fission

ha' - = 2’:}1 V- (v Qv a-) + ("Ta- T ‘Ye’( t

o Effective mass is density dependent, with spin-orbit, Poisson solver
for coulomb potential.
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Mathematics

O Multiresolution O Approximation using Alpert’'s multiwavelets

Function represented by 2 methods, spanning

Yo
D same approximation space:

1. scaling function basis

Vi .
E 2. multi-wavelet basis

v 2" -1 k=1
Ly 7= 3 3 s
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O Low-separation rank: (e.g., optimized approx of Green functions with
Gaussians: Beylkin-Mohlenkamp, Beylkin-Cramer-Fann-Harrison, Harrison)
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Parallel computing strategy

O MPI: node to node communication
O Distributed arrays and FUTURES

O Pthreads: multi-threading within one node

threads per node: 10+main MPI +thread server = 12

OO0 Load-balance: map tree to parallel hash table

k=0

k=2
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API

+ Threading
Pool

J

WorldTaskQueue
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Self-consistent HFB

»Initial Wavefunctions(u, v): deformed HO functions+random gauss
»Construct Hamiltonian: H(i, j);
» time consuming, quadrature, L2-inner product
»Diagonalization: Hx=eBx; big problem for large system
(Parallel diag added)

» Transform from coefficients to wfs; used to be very time consuming

» Improve approximations by applications of BS Helmholtz kernel:
u_new=apply(kernel, u), v._new=apply(kernel, v),
»|teration until convergence: if error is small

error = norm(u_new-u)+norm(v_new-v)
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Adaptive Representation of Quasi-Particle
Wave Functions

MADNESS mesh B-spline Mesh (focus on boundary

condition; rectangle box for deformation)

Fixed mesh, not efficient

A 2-D slice of the 3-D support of the

multiwavelet bases for the 2-cosh

potential (left) and one of its wave- OAK
functions (right). RIDGE
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ASLDA Tests (from summer 2010)

* More complicated and time-consuming than SLDA
in the calculation of local polarization (p,/p,) with thresh=1.e-4
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0.24 | E=330.99
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Capabilities (recent additions)

Addition of parallel iterative complex Jacobi Hermitian diagonalizer

full 64 bit addressing, thread safe (bypassing problems with 32 bit
BLACS/Scalapack)

fully distributed data

Boundary conditions: Dirichlet, Neumann, Robin, quasi-periodic, free,
asymptotic, mixed : 1-6D for derivatives

Fast bandlimited tranformations (e.g. multiwavelets to/from FFT, JCP 2010)
New C++ standard compatibility (icc, gcc, pgcc)

Portable to PCs, Macs, IBM BGL, Cray, clusters

In SVN with autoconf, configure, ...

http://code.google.com/p/m-a-d-n-e-s-s/

Spin-orbit hamiltonian, nonlinear Schrodinger, molecular DFT, TDSE
examples available in examples directory. Please ask us for HFB DFT
code after this summer.
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To extremely deformations (2010)

O Towards to 10° cold-atoms in an elongated trap

Finite-size effects indicated by

CREE - cooo)s

O MADNESS takes 3~4 hours for 100
particles on 2400 cores in an elongated trap.

Involving 2000 eigen-solutions

Density p,

B-spline calculations:

extremely slow
(2 weeks, 140 cores)
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To extremely deformations (2010)

O Towards to 10° cold-atoms in an elongated trap
Finite-size effects indicated by

e

O deformation in z-direction 1/50.
O particle 1000 particles -> 105 wave fns
O ecut=20
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MADNESS: High-level composition

« Coding composition is close to the physics,

example with h=m=1 (chemist notation)
o E=<\v‘—%vz+V>w+fw2(X)ﬁw2(Y)dxdy

operatorT op = CoulombOperator(k, rlo, thresh);
functionT rho = psi*psi;
double twoe = inner(apply(op,rho),rho);
double pe = 2.0*inner(Vnuc*psi,psi);
double ke = 0.0;
for (int axis=0; axis<3; axis++) {
functionT dpsi = diff(psi,axis);
ke += inner(dpsi,dpsi);
}

double energy = ke + pe + twoe;
MADNESS 2009 R?
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Adaptive Representation of Support of
Wave-Functions

A 2-D slice of the 3-D support of the multiwavelet bases for the 2-cosh

potential (left) and one of its wave-functions (right).
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Summary

Target is to develop an accurate, scalable, portable 3D nuclear DFT solver.
What have done this year:

1) Hybrid HFB test for continuum

2) HFB solvers

A. Reproduced SLDA/ASLDA from last year and compared
well with 2-d spline (3 digits) (~2K lines)

B.Skyrme (testing with fully 3-D, SKM* interaction) (~3K lines)

Work target:

Outlook: calculation of large deformed systems, ASLDA (20K
wavefunctions), each wave function has 7+ levels of refinement (87
boxes), 1843 basis functions per box, 87, ~12B unknowns for 1-e5
precision. For Skyrme test, 10K quasi-particle wave-functions (4
components+proton+neutron, with broken time-reversal symmetry)

Debugging problem on Jaguarpf at ORNL at 20K-120K cores
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Solving nuclear problems

(-4V+7V )V =EV
¥ =2(-V:-2E) V¥
= 2G*(V'Y)
—kfr—s|

¢ f(s) in3D:k>=-2F

(G*f)@):jds

47[‘7"—3‘

¢ Spin-orbit coupling implemented in nuclear physics(2008)
© effective mass is density dependent (2010)
¢ out-going boundary condition (fo do...)
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Graphics Capability: generate VTK

log(ul5)
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The 15-th wave-function for the 2-cosh potential OAK
with spin-orbit FRIDGE
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