
The Asynchronous
Dynamic Load-Balancing
Library

Rusty Lusk, Steve Pieper, Ralph Butler, Anthony Chan

Mathematics and Computer Science Division

Nuclear Physics Division

Argonne National Laboratory

2
Argonne National

Laboratory

Outline

Overview of ADLB
The API in a nutshell
How it works
Tutorial example
Activities since last year
Plans near and far
The five questions

3
Argonne National

Laboratory

Master/Slave Algorithms and Load Balancing

Advantages
– Automatic load balancing

Disadvantages
– Scalability - master can become bottleneck

Wrinkles
– Slaves may create new work
– Multiple work types and priorities that impose ordering

MasterMaster

SlaveSlave SlaveSlave SlaveSlave SlaveSlave SlaveSlave

Shared
Work queue

Shared
Work queue

4
Argonne National

Laboratory

The ADLB Model (no master)

Doesn’t really change algorithms in slaves
But need distributed implementation of shared work queue for
scalability

SlaveSlave SlaveSlave SlaveSlave SlaveSlave SlaveSlave

Shared
Work queue

Shared
Work queue

5
Argonne National

Laboratory

The Vision
No explicit master for load balancing; slaves make calls to ADLB
library; those subroutines access local and remote data structures
(remote ones via MPI).
Simple Put/Get interface from application code to distributed work
queue hides most MPI calls
– Advantage: multiple applications may benefit
– Wrinkle: variable-size work units, in Fortran, introduce some

complexity in memory management
Proactive load balancing in background
– Advantage: application never delayed by search for work from

other slaves
– Wrinkle: scalable work-stealing algorithms not obvious

6
Argonne National

Laboratory

GFMC and ADLB
Specific Problem: to scale up GFMC, a master/slave code
General Problem: scaling up the master/slave paradigm in general
– Usually based on a single (or shared) data structure

Goal for GFMC: scale to 160,000 processes (available on BG/P)
General goal: provide simple yet scalable programming model for
algorithms parallelized via master/slave structure
General goal in GFMC setting: eliminate (most) MPI calls from
GFMC and scale the general approach
GFMC is not an easy case:
– Multiple types of work
– Any process can create work
– Large work units (multi-megabyte)
– Priorities and types used together to specify some sequencing

without constraining parallelism (“workflow”)

7
Argonne National

Laboratory

The API (Application Programming Interface)

Basic calls
– ADLB_Init(num_servers, am_server, app_comm)
– ADLB_Server()
– ADLB_Put(type, priority, len, buf, answer_dest)
– ADLB_Reserve(req_types, handle, len, type, prio, answer_dest)
– ADLB_Ireserve(…)�
– ADLB_Get_Reserved(handle, buffer)
– ADLB_Set_Done()
– ADLB_Finalize()

A few others, for tuning and debugging
– ADLB_{Begin,End}_Batch_Put()
– Getting statistics

8
Argonne National

Laboratory

Behind the Scenes

���������������

���

�
�
���
���
���
���
�

�
�
�

�
�
��
�
��
�
��
�
��
�
�

�
�
�

���������������

���

��
���
���
���
���
�

��
�

�
�
�

��� Application Processes

ADLB Servers

put/get

9
Argonne National

Laboratory

A Tutorial Example: Sudoku

1 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

10
Argonne National

Laboratory

Parallel Sudoku Solver with ADLB
Program:

if (rank = 0)
ADLB_Put initial board

ADLB_Get board
while success (else done)

ooh
find first blank square
if failure (problem solved!)

print solution
ADLB_Set_Done

else
for each valid value

set blank square to value
ADLB_Put new board

end while �

1 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

Work-package =
partially completed “board”

11
Argonne National

Laboratory

Optimizing Within the ADLB Framework

Can embed smarter strategies in this algorithm (see ooh)
Even so,�potentially a lot of work packages for ADLB to manage
Can use priorities to address this problem
– On ADLB_Put, set priority to the number of filled squares
– This will guide depth-first search while ensuring that there is

enough work to go around
• How one would do it sequentially

Termination not handled here in case of invalid starting board
– ADLB must manage internally

12
Argonne National

Laboratory

Activities Since Last Year
Ported GFMC and ADLB to BG/P and SiCortex 5832
Supported runs reported in GFMC talk
– 14-neutron drop on 16,384 processors of BG/P
– Speedup of 13,634 (83% efficiency)
– No microparallization since more configurations
– ADLB processed 171 million work packages of size 129KB each,

total of 20.5 terabytes of data moved
– Heretofore uncomputed level of accuracy for the computed

energy and density
– Also some benchmarking runs for 9Be and 7Li

Tuning of ADLB for increased scale required for microparallization
– Introduction of batches to save memory, reduce status updates

Load balancing for memory usage
– Proactive pushing of work units among servers

13
Argonne National

Laboratory

More Activities
Debugging support
– Circular logging buffers
– The hang detector

Scaling experiments

Non-GFMC applications
– One for testing
– One real application

14
Argonne National

Laboratory

A “Classical” CS Test Problem
The “Traveling Salesman” Problem: given a set of points distributed
in (two-dimensional) space, find the shortest closed path that goes
through each point exactly once.������

A short path through all cities in the U.S. with population > 500

15
Argonne National

Laboratory

A Serious Bioinformatics Application
Identifying genes and their functions in genomes by comparing
subsequences with understood subsequences in other genomes

16
Argonne National

Laboratory

Plans
Near-term
– Further microparallelization of GFMC using ADLB, necessary for 12C
– Scaling (further) up on BG/P
– Complete the debugging tools
– Engage other applications, especially within UNEDF

Long-term
– Investigate multithreading the application (locally parallel execution of

work units via OpenMP)
– Revisit the thread model for ADLB implementation, particularly in

anticipation of BG/Q and experimental compute-node Linux on BG/P
– Work with others outside the project in other SciDACs

17
Argonne National

Laboratory

Asynchronous Dynamic Load Balancing -
Thread Approach

The basic idea:

Application

Threads

ADLB Library

Thread

Shared Memory

Put/get

MPI Communication
with other nodes

Work
queue

18
Argonne National

Laboratory

The Questions
What are the main accomplishments since the last meeting? Is your
Year-2 plan well on track?
– Main accomplishments

• complete conversion of GFMC to ADLB (microparallelisation)
• large-scale runs

– A little behind on production runs due to debugging problems
What are the aspects of your science that require high-performance
computing? OR What problems in high performance computing
are you working on in general?
– Problems in high-performance computing:

• How to exploit HPC computers with 100,000 processors
• How to simplify application programming in general

19
Argonne National

Laboratory

The Questions (cont.)
What are the major computational issues? Are there any questions you
would like to bring to the attention of our CS/AM
collaborators? OR Are there general capabilities of your computer
science work that might be of interest to other physicists than the ones
you are currently working with?
– ADLB is a general-purpose library which we are developing / testing /

debugging / tuning in the context of GFMC
– But worth a look for any application in which the parallelism is task-

based and there is little communication among the tasks.
What is the detailed roadmap of your project for the remaining part of
Year-2 and Year-3? Could you sketch the work plan for Years 4 and 5?
– Near-term: scaling up and doing 12C
– Far-term: threads to allow further scaling, both in app and lib
Are there any "showcase" (i.e., of Nature/Science caliber)physics and
computational questions that you are hoping to answer in Years 2 and
3?
– It’s up to Steve!

20
Argonne National

Laboratory

Argonne National
Laboratory

Clustering of functionally related genes. This diagram shows a
graphical display of similar chromosomal regions of five genomes
with the highest score, based on similar proteins in this region, and
phylogenetic distance. The display is centered on this focus PEG,
which is shown in red and numbered 1. In this example, highly similar
genes from various Campylobacter jejuni strains are 'pinned through
a biotin biosynthesis gene. Surrounding genes are also involved in
this biotin biosynthetic pathway.

Campylobacter jejuni is a bacterial pathogen that is one of the most
common causes of human gastroenteritis in the world.

Biotin is vitamin B7 which is necessary for the production of fatty
acids (for cell walls/membranes) and he metabolism of fats and
amino acids.

Argonne National
Laboratory

Sequence similarity comparison of genomes. These genomes are fairly similar as noted by the
purple, blue and green gene colors. The comparison is in reference to the outside genome (circle).
Comparison of all proteins in 2 Campylobacter jejuni genomes. The results are presented in a
table, with different genomes shown side-by-side in columns, and proteins in rows. The proteins are
listed in order of their appearance in the selected reference genome.

	The Asynchronous Dynamic Load-Balancing Library
	Outline
	Master/Slave Algorithms and Load Balancing
	The ADLB Model (no master)
	The Vision
	GFMC and ADLB
	The API (Application Programming Interface)
	Behind the Scenes
	A Tutorial Example: Sudoku
	Parallel Sudoku Solver with ADLB
	Optimizing Within the ADLB Framework
	Activities Since Last Year
	More Activities
	A “Classical” CS Test Problem
	A Serious Bioinformatics Application
	Plans
	Asynchronous Dynamic Load Balancing - Thread Approach
	The Questions
	The Questions (cont.)
	Slide Number 20
	Slide Number 21
	Slide Number 22

