Years 2 & 3: Personnel, Tasks, and Interconnections

Years 2 & 3: Personnel, Tasks, and Interconnections

Microscopic EDF's from the DME

- Dominant MBPT contributions to bulk properties take the form $\langle V \rangle \sim \operatorname{Tr}_1 \operatorname{Tr}_2 \int d\mathbf{R} \, d\mathbf{r}_{12} \, d\mathbf{r}_{34} \, \rho(\mathbf{r_1}, \mathbf{r_3}) \, K(\mathbf{r}_{12}, \mathbf{r}_{34}) \, \rho(\mathbf{r_2}, \mathbf{r_4}) + \operatorname{NNN} \cdots$

 - density matrices and s.p. propagators
 finite range and non-local resummed vertices K
 functionals of p

• DME => expand DM in local operators w/factorized non-locality

$$egin{aligned} &\langle \Phi | \psi^\dagger ig(\mathbf{R} - rac{1}{2} \mathbf{r} ig) \psi ig(\mathbf{R} + rac{1}{2} \mathbf{r} ig) | \Phi
angle &= \sum_n \Pi_n(\mathbf{r}) \left\langle \mathcal{O}_n(\mathbf{R})
ight
angle \ &\langle \mathcal{O}_n(\mathbf{R})
angle &= ig[
ho(\mathbf{R}),
abla^2
ho(\mathbf{R}), au(\mathbf{R}), \mathbf{J}(\mathbf{R}), \dots ig] \end{aligned}$$

Maps <V> into a extended Skyrme-like EDF!

- Original DME => *calculate* Π_n from expanding about infinite NM
- Optimized DME => *Fit* Π_n , constrain by symmetries and sum rules
- density dependencies, isovector, time-odd,... missing in Skyrme

New low-momentum NNN fits and Nuclear Matter

New low-momentum NNN fits and Nuclear Matter

Knobs to estimate Theoretical error bars:

A-dependence => theoretical error bands (lower limit)

Assess the impact of large uncertainties in the c_i 's appearing in 2- and 3-body TPEP

Vary the order of the underlying EFT

Sensitivity to manybody approximations

New low-momentum NNN fits and Nuclear Matter

Different Λ -dependence for the 2 ways of fitting the 3NF lec's

Supports suggestion of Navratil et al. to use ⁴He radii to constrain fits of 3NF couplings (c_E and c_D)

Large uncertainties in extracting c_3 , c_4 from πN and NN => use NM to constrain (sensitivity at the 2-3 MeV level)

Comparison to ab-initio calculations

Start from *the same* Hamiltonian and compare ab initio solution to the Microscopic DFT calculation based on the DME functional

> CC or FCI calculations of nuclei and nuclei in external fields [energies, densities, density matrices,...]

How important is non-locality and how accurate is the DME?

Are systematics reproduced by DME as we vary parameters (e.g., 3NF couplings, RG cutoff Λ , order of input EFT, ...) in H?

Is the many-body treatment of nuclear matter sufficient?

Early indications are that non-trivial extensions of the DME are needed [see B. Gebremariam and J. Drut later]

Comparison to ab-initio calculations

CC and DFT calculations of ¹⁶O (w/3N contact of varying strength)

Quantitative and qualitative disagreement btw. coupled-cluster and DFT calculation. What is going on?

Possible Reasons for the Poor Agreement

1) DME averages out too much information

- COM P-dependence (spatial non-locality)
- energy-dependence

Possible Reasons for the Poor Agreement

3) Errors in the Hartree contribution => feedback via self-consistency

Treat Hartree exactly a-la Coulomb? [Negele and Vautherin, Sprung et al.]

* See B. Gebremariam's talk for the failings of the standard DME and possible solutions.

Possible Reasons for the Poor Agreement

4) Inadequacy of many-body approximations (I.e., LO Brueckner)

5) Approximate treatment of 3NF $V_{3N} \to \text{Tr}_3[V_{3N}\mathcal{A}_{123}] \approx \text{Tr}_3[V_{3N}]$

6) Implementation errors in HFBRAD (rearrangement terms, etc.)

Long-range pion NN and NNN contributions to the EDF

Derived the most general (N \neq Z, spin-unsaturated) EDF from chiral EFT thru N²LO [SKB and B. Gebremariam]

$$\begin{split} \mathcal{E}^{\rho\rho} &\equiv \sum_{q} \int d\mathbf{r} \left[A^{\rho\rho} \rho_{q} \rho_{q} + A^{\rho\Delta\rho} \rho_{q} \Delta\rho_{q} + A^{\nabla\rho\cdot\nabla\rho} \nabla\rho_{q} \cdot \nabla\rho_{q} + A^{\rho\tau} \left(\rho_{q}\tau_{q} - \mathbf{j}_{q} \cdot \mathbf{j}_{q} \right) \right. \\ &+ A^{ss} \mathbf{s}_{q} \cdot \mathbf{s}_{q} + A^{s\Delta s} \mathbf{s}_{q} \cdot \Delta \mathbf{s}_{q} + A^{\nabla s \circ \nabla s} \nabla \mathbf{s}_{q} \circ \nabla \mathbf{s}_{q} \\ &+ A^{\rho\nabla J} \left(\rho_{q} \nabla \cdot \mathbf{J}_{q} + \mathbf{j}_{q} \cdot \nabla \times \mathbf{s}_{q} \right) + A^{\nabla \cdot s \nabla \cdot s} \left(\nabla \cdot \mathbf{s}_{q} \right) \left(\nabla \cdot \mathbf{s}_{q} \right) \\ &+ A^{JJ} \left(\sum_{\mu\nu} J_{q,\mu\nu} J_{q,\mu\nu} - \mathbf{s}_{q} \cdot \mathbf{T}_{q} \right) + A^{JJ} \Big[\left(\sum_{\mu} J_{q,\mu\mu} \right) \left(\sum_{\mu} J_{q,\mu\mu} \right) + \sum_{\mu\nu} J_{q,\mu\nu} J_{q,\nu\mu} - 2 \mathbf{s}_{q} \cdot \mathbf{F}_{q} \Big] \Big] \end{split}$$

Each coupling function splits into 2 terms

- 1) Λ -dependent Skyrme-like coupling constants
- Λ-independent coupling functions from pion physics with non-trivial density dependence

Suggests refitting extended Skyrme functionals with non-trivial density-dependence/isovector properties from pion physics

Sensitivity studies? Can we "see" the pion? Trends along isotopic chains?...

Long-range pion NN and NNN contributions to the EDF

Novel density-dependencies driven by 1π and leading 2π exchange

Longest range V <==> Strongest density dependence in EDF

 \square

3NF 2π contributions will dominate novel density dependencies for spin-orbit terms (coming soon...)

Summary of Y2 Progress

- 1) New NNN fits for smooth V_{lowk} and V_{SRG}
 - nuclear matter (good prelim. results, error bands, code available soon)
 - coupled cluster checks of O16/Ca40 (and eventually NM) critical
- 2) First microscopic DFT comparisons to ab initio made
 - CC/FCI calculations starting from same Hamiltonian for O-16, Ca-40, and Ca-48
 - many-body approximations made and the DME (in original form) used to derive the EDF may be too crude
 - see talks by B. Gebremariam and J. Drut for extensions/alternatives
- 3) Contributions of long-range pion physics to EDF derived
 - NN terms through NNLO of chiral EFT derived and coded
 - 3NF contributions to be finished soon
 - generalized Skyrme functional in the near term (Stoitsov, Schunk)

See Furnstahl's talk for complete list of Y2/Y3 plans