Multiresolution and Low-Separation Rank Methods for Nuclear DFT

George Fann, and William A. Shelton Oak Ridge National Laboratory

Witek Nazarewicz, Nicolas Schunk and Junchen Pei

University of Tennessee/ORNL

Robert Harrison

ORNL/UTK

UNEDF Workshop, Park Forrest, WA

Office of

ence

June 23-26, 2008

The funding

- The application of MADNESS(++) to nuclear physics is funded through SciDAC UNEDF (PI:Bertsch) by the Office of Advanced Scientific Computing Research
- The development of MADNESS and MAD++ is funded by the U.S. Department of Energy, Office of Advanced Scientific Computing Research and the division of Basic Energy Science, Office of Science, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, by the SciDAC SAP in computational chemistry (PI: Fann) and SciDAC BES (PI:Harrison).
- This research was performed in part using
 - resources of the National Energy Scientific Computing Center which is supported by the Office of Energy Research of the U.S. Department of Energy under contract DE-AC03-76SF0098,
 - and the Center for Computational Sciences at Oak Ridge National Laboratory under contract DE-AC05-00OR22725.

Multiwavelets and Fast Methods

- Automatic adaptivity for discretization and order of accuracy (h and p)
 - Integral and differential operators
 - Functions
 - Compatible between function and operator calculus
- Accurate treatment of singularities
- Accurate treatment of higher order derivatives
 - Improved adaptive treatment of Gibbs type phenomena
- Green's function (Poisson, Helmholtz, etc.)
 - Fast real analysis based O(N) method
 - Accuracy is proportional to
 - Degrees of freedom
 - Work (flops)
- DFT, Lippmann-Schwinger, Hartree-Fock, …
- Constructive low separation rank approximation for fast and scalable (log d) methods for high dimensional and non-convolution type kernels

Multiresolution Methods for DFT

- Adaptive 3-D multiresolution pseudospectral methods for nuclei
 - User defined accuracy gives universal reference and good scalability
 - Consistent description of bound and resonant states
 - Consistent accuracy in neutronrich or super-heavy nuclei
 - Bridge to reaction theory
- No assumption on symmetry
- Can handle nearly singular or discontinuous functions, and high gradients
- Work is proportional to spectral accuracy
- Controllable and guaranteed precision

Adaptive support of basis functions. A 2-D slice of a 3-D wavefunction from the inverted two-cosh spin-orbit (SO) case

Contributions: Multiresolution Methods for DFT

- Two-cosh, and PTG are examples of non-localized potentials
- "MADNESS applied to density functional theory in chemistry and nuclear physics," J. of Physics (2007)
- Benchmarking solvers for nuclear DFT, in progress, preprint (2008), 2 papers in progress
- High accuracy calculations when compared with splines, harmonic oscillators,...(table of comparison, HO, spline, wavelets for 2-cosh, PTG) with and without spin-orbit (C++ version)
- Merging of HO with wavelets for improved starting wavefunctions.
- Parallel C++ code under development, non-spin and spin orbit working...table and preliminary scaling here.

Eigenvalue (exact)	HO Expansion	Multiwavelets 10 ⁻³	
-39.7400, ½+	-39.7400	-39.7399	
-18.8977, ½+	-18.8977	-18.8976	
-0.3205, ½+	-0.1748	-0.3205	

Poschl-Teller-Ginocchio Potential

Plot of Potential and Absolute Value of Wave Functions for the 2-cosh Potential

Results from Harmonic Oscillator, Spline, Multiwavelets and 3D-lattice

Eigenvalue	Inverte	d 2-cosh pote	ential without spir	n-orbit	Invert	ed 2-cosh pot	ential with spin-o	bit
# Spin π	HO, N=22	Spline	Wavelets, 5e-7	3D-lattice	HO, N=22	Spline	Wavelets, 3.e-5	3D-lattice
1 1/2 +	-22.2 3984	-22.24011	-22.24010725	-22.240 20	-22.2 3984	-22.240 <mark>0</mark>	-22.240107	-22.240 2
2 1/2 -	-22.239 49	-22.23998	-22.23998058	-22.2 4010	-22.239 49	-22.2399	-22.239980	-22.2 401
3 1/2 +	-9.2 1869	-9.22050	-9.22050134	-9.220 62	-9.43 509	-9.436 <mark>5</mark>	-9.43662	-9.436 74
4 3/2 +	-9.2 0945	-9.21260	-9.21260181	-9.212 71	-9.4 2925	-9.43 19	-9.43202	-9.432 14
5 1/2 +	-9.2 0945	-9.212 47	-9.21260181	-9.212 71	-9.4 2911	-9.43 10	-9.43080	-9.430 92
6 3/2 -	-9.2 0943	-9.21129	-9.21129039	-9.211 40	-9.42 490	-9.4278	-9.42788	-9.427 99
7 1/2 -	-9.2 0943	-9.211 <mark>16</mark>	-9.21129039	-9.211 40	-8.77 589	-8.7782	-8.77828	-8.778 39
8 1/2 -	-9.2 0269	-9.20595	-9.20595248	-9.20 606	-8.77 013	-8.773 <mark>7</mark>	-8.77383	-8.773 94
9 1/2 +	-1.7 1590	-1.724 <mark>67</mark>	-1.72514284	-1.72 840	-1.7 1593	-1.72 <mark>39</mark>	-1.72516	-1.72 843
10 1/2 -	-1.5 1146	-1.526 <mark>21</mark>	-1.52690510	-1.52 276	-1.5 1149	-1.52 <mark>51</mark>	-1.52693	-1.52 279
Moment n=1	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Moment n=2	0.717832	0.7196883	0.71902147	0.719124	0.7177410	0.719598	0.718931	0.719033
Moment n=3	0.043470	0.043865	0.04379460	0.043805	0.043463	0.043857	0.043786	0.043797

Parallel Scaling for Nuclear Multiwavelet Code w/o Spin Orbit

Preliminary Parallel Performance of MADNESS-NDFT on CRAY-XT3

Test Problem for Pairing

$$\begin{pmatrix} h - \lambda & \delta \\ \delta & -h + \lambda \end{pmatrix} \begin{pmatrix} U_{i}(r) \\ V_{i}(r) \end{pmatrix} = E_{i} \begin{pmatrix} U_{i} \\ V_{i} \end{pmatrix}$$

where
$$h = -\frac{\hbar^{2}}{2m} \nabla^{2} + V_{2 \cosh}(x, y, z) + V_{so}(x, y, z)$$

and

$$\delta = 0.02 * V_{2 \cosh} (x, y, z)$$

$$\lambda = -1$$

- Wavelet still in progress.
- Preliminary Results using Harmonics Oscillator Basis and Spline have been computed.
- Solving for occupation number, density and pairing-density

Deliverables

- Main Accomplishment:
 - Parallel MAD++ for Nuclear DFT code:
 - Cray-XT4, Intel and AMD clusters, PCs, laptops
 - Year 2 plan: On track, still testing on new spin-orbit problem.
 - Code port to IBM BGL/P
 - Paper: G I Fann, R J Harrison, G Beylkin, J Jia, R Hartman-Baker, W A Shelton and S Sugiki, MADNESS applied to density functional theory in chemistry and nuclear physics, J of Physics Conference Series, vol. 78, 2007.
 - Presentations:
 - G. Fann, et al., "Solving 3-D and 6-D Schrödinger's Equations Using Multiresolution Adaptive Pseudo-spectral Methods on Leadership Class Computers," SIAM Conference on Parallel Processing for Scientific Computing, Atlanta, GA, March 12-14, 2008.
 - W. A. Shelton, "Implementing Density Functional Theory based Electronic Structure Code on Advanced Computing Architectures, The 2nd LACM-EFES-JUSTIPEN Workship, 2008, Oak Ridge, 2008.
 - G. Fann, *Multiresolution Methods for Solving Electronic Structure*, Joint-JUSTIPEN-LACM Workshop, Oak Ridge, TN 2007.

Current and Future Work

Year 2

- Integration of HO with wavelets methods in 3-D
 - Testing with more spin-orbit and pairing
 - Conversion of Python to C++ version of the code for MADNESS Nuclear DFT code for parallel computers
 - Demonstration for leadership computing platforms
 - Solving the symmetry-free non-self-consistent DFT problem
 - alpha MADNESS core c++ code at http://code.google.com/p/m-a-d-n-e-s-s/
- Year 3
 - Development of HF method with realistic effective interactions (Skyrme DFT), Nuclear-MADNESS-HF
 - Optimization, code porting and scaling on NLCF machines: Cray and IBM
 - Boundary conditions
 - Alpha code release of Nuclear physics module using MADNESS
- Year 4-Testing and additions to Nuclear-MADNESS-HFB: Development of version 1.0
- Year 5-Testing of Nuclear-MADNESS-HFB: Application to the fission problem

Aspects of work which require HPC:

- Modeling large molecule or many body systems with high accuracy with discrete and/or continuous spectra
- 3N-systems, for N large
- General Problem in HPC:
 - Accurate discretizations, good basis and boundary conditions
 - Basic problems in solving PDEs and ODEs accurately
 - Our approach is adaptive spectral using discontinuous wavelet basis and low-separation rank representations of functions and operators, work is proportional to accuracy
 - Scalable direct and iterative solvers, Green's function techniques
 - Fast O(N)-methods for time-dependent "stiff" problems
 - Dynamic load balancing

MADNESS in Chemistry

- Current capabilities n-D, (tested n=1,2,3,4,5,6,20), object oriented, …
 - E.g. compressing f in multiwavelet f=Function(f, k=3), dfdz=f.diff(3),
 - Laplacian_of_f=f.laplacian(), normf=f.norm2()
- Example codes:
 - TDSE
 - Molecular DFT
 - Time dependent DFT
 - Hartree-Fock, TDHF
- AM and CS
 - Multiwavelet representation of functions and operators
 - Low separation rank representation of functions and operators
 - Asymptotic boundary condition
 - Periodic boundary condition
 - Iterative and Direct methods (and some combinations)

Chemistry Application Integral Formulation of Bound State Schrödinger Equation

- Solving the integral equation
 - Eliminates the derivative operator and related "issues"
 - Converges as fixed point iteration with no preconditioner

$$\left(-\frac{1}{2}\nabla^{2}+V\right)\Psi = E\Psi$$

$$\Psi = -2\left(-\nabla^{2}-2E\right)^{-1}V\Psi$$

$$= -2G^{*}\left(V\Psi\right)$$

$$\left(G^{*}f\right)(r) = \int ds \frac{e^{-k|r-s|}}{4\pi|r-s|}f(s) \text{ in } 3D; k^{2} = -2E$$

Benzene dimer LDA

aug-cc-pVDZ geometry, kcal/mol.

Basis	Uncorrected	BSSE	Corrected
cc-pVDZ	-1.506	-1.035	-0.471
cc-pVTZ	-1.271	-0.387	-0.884
cc-pVQZ	-1.074	-0.193	-0.881
aug-cc-pVDZ	-1.722	-0.698	-1.024
aug-cc-pVTZ	-1.159	-0.193	-0.966
ε=10 ⁻⁵	-0.872		
ε=10 ⁻⁷	-0.956		
ε=10 ⁻⁹	-0.956		

2-D Slice of 3-D Adaptive Refinement for H₂

Approximation Near Boundary

A 2-D slice of the 3-D refinement of cubes of a k=3 multiwavelet approximation of the characteristic function for a sphere.

H₂, 2-body, 6-D Schrodinger's Equation

- Hydrogen Mol, bond length r=1.4 bohrs
- Best variational energy known to us: -1.133629571456 (Mitin)
- k=5, -1.1335567888
- k=7, -1.1336294353
- k=9, -1.1336295698
- k=11, -1.1336295713
- k=13, -1.1336295714
- Truncation 1.e(2-k), with smoothing

Scaling of MAD++ on 4096 Cu lattice (prelim) on ORNL's Cray XT-3, 2007

