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Optimization Applications in SciDAC

¢ Quantum Chemistry
¢ Energy minimization
¢ Transition states
¢ Nuclear Physics
¢ Nonlinear eigenvalues
¢ Parameter estimation
¢ Least action pathways
< Accelerator Design
¢ Shape optimization
¢ Nonlinear eigenvalues
¢ Groundwater Flow
¢ Parameter estimation

Towards Optimal Terascale Simulations
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Toolkit for Advanced Optimization (TAO)

An optimization toolkit for solving large-scale optimization
problems on advanced (massively parallel) architectures.

< Portability, performance, scalability

< An interface independent of architecture

¢ Leverage existing parallel computing infrastructure (PETSc)

&
e
2o >

TAO (www.mcs.anl.gov/tao) J

NWChem, MPQC
< Source code and documentation
¢ Installation instructions, example problems, . ..
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TAO Impact

Selected applications

¢ Semiconductor modelling
© Magnetic nanostructures
¢ Subsurface remediation
¢ Variational surfaces
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P. Bauman P. Joshi

Toolkits

< TADM - Parameter estimation
¢ BUSTER - Protein structures
¢ ELEFANT - Statistical machine learning
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UNEDF: Parameter Estimation in Nuclear Fission
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Expensive evaluation of fi(x) (Uass ~ 12 hours)
Large memory requirements (Uszszs ~ 0.5GB)
Many nuclei (about 2,000)

A wide range of observables (binding energy, . ..)
Noisy function evaluations

Lack of derivatives with respect to parameters
Several minima with different predictive powers
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UNEDF Research Issues: Nonlinear Optimization

¢ What are the best techniques for solving nonlinear, noisy
optimization problems

min {f(x) :zp <z <zy}
when the gradient V f of f is not available and the evaluation

of f is computationally intensive (1,000 CPU days)

¢ How can we solve systems of n nonlinear equations
H(x)=0

when derivatives are not available and the number of variables

n is large?
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Broyden’s Method: A Biased Bibliography

Broyden (1965). Introduced two methods. ... since Method 2
apears to be unsatisfactory in practice . ..

Gay and Schnabel (1977). Projected updates.

Gay (1979). Broyden's method for linear systems. Refers to
the second method as Broyden's bad method.

Srivasta (1984). Modified Broyden's second method so that
only a few vectors of storage of order n are needed.

Johnson (1988). Modified Srivasta's approach to incorporate
additional information from previous iterates.

Byrd, Nocedal, Schnabel (1994). Compact form.

¢ Baran, Bulgac, Forbes, Hagen, Nazarewicz, Schunk, Stoitsov

(2008). Improvement of Johnson's approach
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Systems of Nonlinear Equations

Given a function f: R"™ — R", find a vector z* that solves the
system of nonlinear equations

f(z)=0

Notation

The Jacobian matrix is

f,(x) = (81f($), R 7anf(x))
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Broyden’s Method 1

Given a sequence of iterates xg, x1, ..., Broyden's method
generates approximation to the Jacobian matrix f'(xy) via

(yx — Brsk)si

Bi+1 = B +
skl

where the vectors g5 and sj are defined by

yr = f(xk + sk) — f(zr), Sk = The1 — Tk

Note that By 1 satisfies the secant equations

Bri15k = U
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Broyden’s Method 2

(sk — Hryp)yl

Hyy1 = Hy +
vk

Compact Form

Hy1 = Hy + (Sk — HoYy) N, 'YE

where .
_Jyiyy i<y
[Nklij = { 0 otherwise

Sk = [Sla "'7876]7 Y = [yla 7yk]
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Broyden’s Method 2: Projected Updates

1
Hy1 = Ho+ (Sk — HoYs) (Vi Vi) Yy,

where
Skz [81,...,Sk], Y = [yl,...,yk]
Remarks The projection into the space spanned by Y} is
-1
P= (YY) v

Note that

Hy 1Yy = Sy
and thus secant equations from previous iterations are satisfied.
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Johnson (1988) method

In our notation, Johnson’s method is of the form
Tp1 = o — Jpf(zr),
where Jj depends on constants a, wp, and w; for j =1,...m.

Theorem. If Hy = —al, wg =0, and w; = 1, then Johnson's
method is the projected Broyden method, that is,

-1
J. = Hy+ (Sk — H()Yk) (YkTYk) Yk,T
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Implementation for Large Problems: The Main Issues

< Broyden's method 1 or Broyden's method 27

¢ How do we globalize Broyden? A line search method

Tpy1 = T — apHy f(xy)?
But the search direction —Hy, f(x) may not be downbhill.

< At each iteration we keep the last s1,...,8, and Y1, ..., Ym.-
How many vectors of storage should we keep?

¢ Do we need to re-start? At some point it may be better to
throw away all previous information and re-start with the
current best iterate x; and some inverse Hessian Hj,.
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Computational Experiments: Benchmark Problems

Eight nonlinear variational problems of the form
min{V(z) : z € R"}
The nonlinear systems are the gradient equations
f(z) = VV (@)

We show results for 4 problems with n = 2500 variables.

© PJB. Pressure in a journal bearing. Convex, ill-conditioned

© MSA. Minimal surface area. Convex, ill-conditioned

© 0DC. Optimal design. Convex, discontinuos Jacobian V2 f

¢ GL2. Ginzburg-Landau conductor. Non-conve, ill-conditioned
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Computational Experiments: BB or PBB

Residuals for Broyden's method - imited memory

nvecs =10 rsfreq =
nvecs =10 rsfreq
1 nvecs =10 rsfreq
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PJB nx=50 ny=50par=01

300
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Residuals for Broyden's method - imited memory

—— BB: nsrch = 1 nvecs =10rsfreq =
@ BB: nsrch = 1 nvecs =10 rsfre
@ PBB: nsrch

50 100 150 200 250 300 350
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Computational Experiments: BB or PBB

Residuals for Broyden's method - imited memory Residuals for Broyden's method - limited memory
10 T T T 10! T T T
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Computational Experiments: Restart Frequency

Residuals for Broyden's method - imited memory
T T T 10 r

Residuals for Broyden's method - imited memory
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PJB nx=50 ny=50par=01 MSA nx =50 ny=50par =0
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Computational Experiments: Restart Frequency

Residuals for Broyden's method - imited memory
10 T T T

) 50 100 150 200 250 300 350

ODC nx =50 ny = 50 par = 0.008

Residuals for Broyden's method - imited memory
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Computational Experiments: Number of Trial Points

Residuals for Broyden's method - imited memory

—— PBB: nsrch = 1 nvecs =10 rsfreq =20
@ PBB: nsrch = 2 nvecs =10 rsfreq =20
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Computational Experiments: Number of Trial Points
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Contributions: Optimization and Performance Analysis

D R S R R SR R O B R

HFODD majordomo list (January 2007)

Profile of HFODD using Tuning and Analysis Utilities (TAU)
HFODD re-structuring (40% computing time reduction)
NEDFT planning meeting (March 2007)

Full storage eigenvalue solver (60% computing time reduction)
NEDFT planning workshop (August 2007)

Analysis of Broyden's method

Nuclear Energy Functional workshop (January 2008)
Optimization in SciDAC Applications, J. of Physics (2007)

Benchmarking derivative-free optimization algorithms (2007)
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Future Work

Year 3
¢ Development and performance of mass-table algorithms in BG
¢ Parallelization of HFODD
¢ Development of model-based derivative-free algorithms

Year 4
¢ Model and geometry-based optimization algorithms for DFT
¢ Investigation of performance on new DFT functionals

Year 5
¢ Fission pathways

¢ Performance, evaluation, and validation of DFT functional
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