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Optimization Applications in SciDAC

� Quantum Chemistry
� Energy minimization
� Transition states

� Nuclear Physics
� Nonlinear eigenvalues
� Parameter estimation
� Least action pathways

� Accelerator Design
� Shape optimization
� Nonlinear eigenvalues

� Groundwater Flow
� Parameter estimation

Towards Optimal Terascale Simulations



Toolkit for Advanced Optimization (TAO)

An optimization toolkit for solving large-scale optimization
problems on advanced (massively parallel) architectures.

� Portability, performance, scalability
� An interface independent of architecture
� Leverage existing parallel computing infrastructure (PETSc)

TAO (www.mcs.anl.gov/tao)

NWChem, MPQC

� Source code and documentation
� Installation instructions, example problems, . . .

www.mcs.anl.gov/tao


TAO Impact

Selected applications

� Semiconductor modelling
� Magnetic nanostructures
� Subsurface remediation
� Variational surfaces P. Bauman P. Joshi

Toolkits

� TADM - Parameter estimation
� BUSTER - Protein structures
� ELEFANT - Statistical machine learning



UNEDF: Parameter Estimation in Nuclear Fission

f(x) =
m∑

k=1

σk‖fk(x)− yk‖2 x =⇒ HFODD =⇒ fk(x)

� Expensive evaluation of fk(x) (U236 ≈ 12 hours)

� Large memory requirements (U236 ≈ 0.5GB)

� Many nuclei (about 2,000)

� A wide range of observables (binding energy, . . . )

� Noisy function evaluations

� Lack of derivatives with respect to parameters

� Several minima with different predictive powers



UNEDF Research Issues: Nonlinear Optimization

� What are the best techniques for solving nonlinear, noisy
optimization problems

min {f(x) : xL ≤ x ≤ xU}

when the gradient ∇f of f is not available and the evaluation
of f is computationally intensive (1,000 CPU days)

� How can we solve systems of n nonlinear equations

H(x) = 0

when derivatives are not available and the number of variables
n is large?



Broyden’s Method: A Biased Bibliography

� Broyden (1965). Introduced two methods. . . . since Method 2
apears to be unsatisfactory in practice . . .

� Gay and Schnabel (1977). Projected updates.

� Gay (1979). Broyden’s method for linear systems. Refers to
the second method as Broyden’s bad method.

� Srivasta (1984). Modified Broyden’s second method so that
only a few vectors of storage of order n are needed.

� Johnson (1988). Modified Srivasta’s approach to incorporate
additional information from previous iterates.

� Byrd, Nocedal, Schnabel (1994). Compact form.

� Baran, Bulgac, Forbes, Hagen, Nazarewicz, Schunk, Stoitsov
(2008). Improvement of Johnson’s approach.



Systems of Nonlinear Equations

Given a function f : Rn → Rn, find a vector x∗ that solves the
system of nonlinear equations

f(x) = 0

Notation

x =

 x1
...
xn

 , f(x) =

 f1(x)
...

fn(x)


The Jacobian matrix is

f ′(x) = (∂1f(x), . . . , ∂nf(x))



Broyden’s Method 1

Given a sequence of iterates x0, x1, . . ., Broyden’s method
generates approximation to the Jacobian matrix f ′(xk) via

Bk+1 = Bk +
(yk −Bksk)sT

k

‖sk‖2
,

where the vectors yk and sk are defined by

yk = f(xk + sk)− f(xk), sk = xk+1 − xk

Note that Bk+1 satisfies the secant equations

Bk+1sk = yk



Broyden’s Method 2

Hk+1 = Hk +
(sk −Hkyk)yT

k

‖yk‖2

Compact Form

Hk+1 = H0 + (Sk −H0Yk)N−1
k Y T

k

where

[Nk]i,j =
{
yT

i yj if i ≤ j
0 otherwise

Sk = [s1, ..., sk], Y = [y1, ..., yk]



Broyden’s Method 2: Projected Updates

Hk+1 = H0 + (Sk −H0Yk)
(
Y T

k Yk

)−1
Y T

k

where

Sk = [s1, ..., sk], Y = [y1, ..., yk]

Remarks The projection into the space spanned by Yk is

Pk =
(
Y T

k Yk

)−1
Y T

k

Note that
Hk+1Yk = Sk

and thus secant equations from previous iterations are satisfied.



Johnson (1988) method

In our notation, Johnson’s method is of the form

xk+1 = xk − Jkf(xk),

where Jk depends on constants α, w0, and wj for j = 1, . . .m.

Theorem. If H0 = −αI, w0 = 0, and wj ≡ 1, then Johnson’s
method is the projected Broyden method, that is,

Jk = H0 + (Sk −H0Yk)
(
Y T

k Yk

)−1
Y T

k



Implementation for Large Problems: The Main Issues

� Broyden’s method 1 or Broyden’s method 2?

� How do we globalize Broyden? A line search method

xk+1 = xk − αkHkf(xk)?

But the search direction −Hkf(xk) may not be downhill.

� At each iteration we keep the last s1, . . . , sm and y1, . . . , ym.
How many vectors of storage should we keep?

� Do we need to re-start? At some point it may be better to
throw away all previous information and re-start with the
current best iterate xk and some inverse Hessian Hk.



Computational Experiments: Benchmark Problems

Eight nonlinear variational problems of the form

min {V (x) : x ∈ Rn}

The nonlinear systems are the gradient equations

f(x) = ∇V (x)

We show results for 4 problems with n = 2500 variables.

� PJB. Pressure in a journal bearing. Convex, ill-conditioned

� MSA. Minimal surface area. Convex, ill-conditioned

� ODC. Optimal design. Convex, discontinuos Jacobian ∇2f

� GL2. Ginzburg-Landau conductor. Non-convex, ill-conditioned



Computational Experiments: BB or PBB



Computational Experiments: BB or PBB



Computational Experiments: Restart Frequency



Computational Experiments: Restart Frequency



Computational Experiments: Number of Trial Points



Computational Experiments: Number of Trial Points



Contributions: Optimization and Performance Analysis

� HFODD majordomo list (January 2007)

� Profile of HFODD using Tuning and Analysis Utilities (TAU)

� HFODD re-structuring (40% computing time reduction)

� NEDFT planning meeting (March 2007)

� Full storage eigenvalue solver (60% computing time reduction)

� NEDFT planning workshop (August 2007)

� Analysis of Broyden’s method

� Nuclear Energy Functional workshop (January 2008)

� Optimization in SciDAC Applications, J. of Physics (2007)

� Benchmarking derivative-free optimization algorithms (2007)



Future Work

Year 3

� Development and performance of mass-table algorithms in BG

� Parallelization of HFODD

� Development of model-based derivative-free algorithms

Year 4

� Model and geometry-based optimization algorithms for DFT

� Investigation of performance on new DFT functionals

Year 5

� Fission pathways

� Performance, evaluation, and validation of DFT functional


