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The CI method applied to valence space calculations in the mass region A=16-60 provide
energies and wave functions that can serve as a testing ground for the approximation methods
that must be used for UNEDF. An example was provided in the last year by the comparison of
Coupled Cluster and CT results for 56N1. We propose to test extensions of DFT that include
correlations such as GCM. This will be done by applying the same Hamiltonian to the CT and
deformed approximations.
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A new theoretical approach is presented that combines the Hartree-Fock variational scheme
with the exact solution of the pairing problem in the finite orbital space. Using this formulation
inthe sd-space as an example, we show that the exact pairing significantly improves the
results for the ground state energy




As in most mean-field approaches, we formulate this
method as variational one. As in the shell model, we as-
sume a general form of the two-body Hamiltonian that
includes the single-particle term ¢ and the (antisym-
metrized) two-body interaction V:

A= Zfzkﬂ ar + — Zﬂjkc a fl araj. (1)
1_1.H

The variational wave function |¥) will be defined below.
The wave function and all properties of the system follow
from the minimization of the expectation value

(T|H|D). (2)

The ground state wave function |¥) for a fixed particle
number N can be presented as a superposition of basis
states,

@) = > Cald), 3)
delD)

where each basis state |d) is a Slater determinant which
for N fermions can be written as usual:

d) =al al_...al |0). (4)



Exact pairing 1n a spherical basis
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Using SU(2) quasi-spin algebra

For example for 5 orbits (tin 1sotopes) the
matrix dimension 1s at most 2000



Sn 1sotopes Skx +EP (renormalized G matrix)
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Ca 1sotopes Skx +EP (renormalized G matrix)
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Spherical basis calculations with Skx — 2001
BE(exp) — BE(theory)
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Exact pairing in a deformed basis

According to the Kramers theorem, the orbitals [vm)
and | — m) are degenerate. However, the pairs may also
be formed by the states m and —m belonging to different
sets of remaining quantum numbers. Thus, for our basis
Slater determinants |d) we assume the following form:

[T al.al_..l0). (6)

vem =0



The variation over amplitudes Cyj with the additional
normalization condition of the wave function, (U|¥) = 1,
leads us to the usual set of equations,

) (d|H|d')Ca = ECa. (7)

d*

The matrix elements (d|H|d’} are calculated for the de-
terminants built on a given single-particle basis, and
equations ([7]) are solved numerically. The mean-field ba-
sis 18 found from the self-consistent HF equations:

h(P}qﬁv = quﬁv: (8}

where
h(p) =t+V(p) 9)
pij = (Ulala;|T). (10)

The mean field potential is given by its matrix elements,

Vii(p) = D Viij k- (11)
kl



Thgq HFP scheme|of solution is the following:

e Start with the spherical single-particle basis |km)

e Choose in this basis the initial diagonal density ma-
trix p corresponding to occupation numbers specific
for prolate or oblate shapes (pairs with small or
large |m|, respectively)

e Solve the HF variational equation (8) and get the
single-particle spectrum (¢, ,€,), in general corre-
sponding to a deformed field

e Construct the “paired” class of many-body basis
wave functions according to eq. (6) and calculate
the matrix elements of the Hamiltonian H

e Solve the variational equation (7) and obtain the
ground state wave function

e Calculate the next-step density matrix (10

e Repeat the procedure starting from the step three
until convergence

Eurp = (U|H|T). (12)




For our test of the methods, we will take for V' the USDB
interaction from the Sd-she]_l model [H] It will allow us
to compare the results obtained using our approximate
method with the exact shell model calculations in the
same single-particle model space.

[6] B.A. Brown and W.A. Richter, Phys. Rev. C 74, 034315
(2006).



In many cases there are two minima and the lowest energy must
be found from several starting densities.
Intrinsic Q moments of the lowest energy state (in units of b?)
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Full sd compared to HFP
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What’s next

Still have up to 5 MeV to go to agree with exact sd results
PN pairing (J=0 T=1 and J=1 T=0 and alpha cluster)
Angular-momentum projection

Non-axial symmetry

Application to pf and higher shells
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Implemention of PN (J=0, T=1) pairing

For T=0, T=1/2 1sospin symmetry means that
PP=NN=PN e.g. adding PN means just
mutiplying NN+PP by 1.5

For higher T it drops off fast and might be
approximated (or ignored)



Full sd with and without the off-diagonal PN (J=1, T=0) tbme
important also for odd-odd nuclei
(already 1n the deformed part?)
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DFT €<= CI

HFP and PCI provides a new tool for CI in very
large model spaces
- use as first test of effective Hamiltonians

HFP provides a way to improve the pairing
part of DFT particularly in the region up to A=100



1. What are the main accomplishments since the last meeting? Is your Year-2 plan
well on track? If not, why? Project completed and paper done.

2. What are the aspects of your science that require high- performance computing?
None in UNEDF
OR What problems in high performance computing are you working on in general?
NuShellx for CI

3. What are the major computational issues? Are there any questions you would like to
bring to the attention of our CS/AM collaborators? OR Are there general capabilities
of your computer science work that might be of interest to other physicists than the
ones you are currently working with?

NuShellx with openMP

4. What is the detailed roadmap of your project for the remaning part of Year-2 and
Year-3?7 Could you sketch the workplan for Years 4 and 57
Apply HFP to fp and higher shells.
Think about J projection and other improvements to HFP

5. Are there any "showcase" (i.e., of Nature/Science caliber) physics and computational
questions that you are hoping to answer in Years 2 and 37 (outside of UNEDF)
First Cl calculations for A=56-100 region - crucial for astrophysics, weak interaction
physics and nuclear structure



The CI computational challenge

50

40

30

20

10

B | i 1 !4 r:ﬂ IV | | ' 1 1 1 1 | 1 1 1 .—
e
- B 55 BE
3.0

[ 2.5 .:
B 2.0 ]
o b

B KX 101! M dimension
. W0 —
: pf | :
— = =| 10° M dimension | -
B d : : :
o > | 105 M-scheme dimension =
- --i — y -
L p ﬁ
—L 1 ’ 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 l 1 1 1 1 I 1 1 1 ]
0 10 20 30 40 50 60

1744 means {55, P35, P1jp> 8 9 OTbits for protons and neutrons




NuShellx — Bill Rae - 2008

» Like the NATHAN code but faster (10 times?) and open-source

* NuShellx@MSU is a user friendly wrap with standard input and output

H matrix elements calculated “on-the-fly” — no matrix to store

» All at+, a+a, and a+a+ matrix elements can be calculated as well
as overlaps for any two-body operator

 Basis in Jp Jn can be truncated — and particle-hole (proton-neutron)
interaction can be diagonalized to keep only the most collective components

* OpenMP used with high efficiency — tested up to 32 cores
should go up to about 100 cores

» Each J and each nucleus can be spread over nodes —
so in principle 1000 nodes x 8 cores or more could be used efficiently

* Many levels for a given J much easier than in M-scheme
(coexisting shapes — level density)
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Example for °°Ni in the pf shell
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Without PN J=0, T=1 pairing
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Gain: Exact vs HFP (MeV)
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With PN J=0, T=1 pairing
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Gain: Exact vs HFP (MeV)
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