Progress report of development of a Skyrme QRPA code for deformed nuclei

J. Engel and J. Terasaki

- 1. Quasiparticle random-phase approximation
- 2. Scheme of system of codes
- 3. Test calculation I and II
- 4. Plan for rest of year
- 5. A computational question

June 25, 2008, Pack Forest

Quasiparticle random-phase approximation Introduce a creation operator of an excited state:

$$\hat{O}^{+} = \sum_{ij} X_{ij} a_{i}^{+} a_{j}^{+} - Y_{ij} a_{j} a_{i}$$
creation operator of quasiparticle
HFB calculation
 X_{ij} and $Y_{ij} \leftarrow QRPA$ equation
Eigenvalue equation linear in X_{ij} and Y_{ij} .
eigenvalue = excitation energy

Scheme of system of codes

HFB calculation with HFBTHO, M. Stoitsov et al., Computer Physics Communications **167** (2005) 43.

Interface code to convert output of HFBTHO to input for our code

quasiparticle wave functions, \clubsuit energies, and auxiliary information

Calculation of interaction matrix elements

Diagonalization of QRPA-Hamiltonian matrix

with ScaLAPACK

We use HO basis for our tests.

Test calculation I

Comparison of interaction energies produced by HFBTHO and those by our code

Our code has <u>subprograms</u> to calculate matrix elements of interactions from quasiparticle wave functions

developed independently of HFBTHO

¹⁶O, SkP, 20 spherical HO shells, no deformation, no pairing gap

Components of energy in MeV

	E_{t0}	E_{t1}	E_{t2}	E_{t3}
HFBTHO	-1476.285	83.596	-39.177	1075.713
Our code	-1476.285	83.595	-39.176	1075.713

	$E_{\rm SO}$	$E_{\rm Coul-dir}$	$E_{\rm Coul-ex}$	$E_{\rm int}$
HFBTHO	-0.662	16.261	-2.776	-343.331
Our code	-0.662	16.176	-2.776	-343.415

Test calculation II

Separation of spurious states from real excited states

- Rotation, $K^{\pi}=\pm 1^+ (J=2)$
- Rotation in a gauge space (particle number), $K^{\pi}=0^+$ (J=0)
- Translation, *K*^{*π*}=0⁻, ±1⁻ (*J*=1)

Spurious states (*E*=0) appear in solutions of QRPA, and real excited states do not have the spurious components, if

- HFB state breaks symmetries,
- wave-function space conserves the symmetries,
- HFB and QRPA equations are solved accurately with the same *H* and quasiparticle wave-function space.

Test calculations are in small spaces; dim. of QRPA Hamiltonian matrix < 700

We can check spurious states with $K^{\pi} = 0^+$ and $K^{\pi} = \pm 1^+$ in spaces of this size.

²⁶Mg, SkP, volume-type pairing, 3 spherical HO shells β =0, Δ_p =1.681 MeV, Δ_n = 1.426 MeV

"Particle-number transition strength"

²⁴Mg, SkP, volume-type pairing, 5 spherical HO shells β =0.28, Δ_{p} =0.034 MeV, Δ_{n} = 0.131 MeV

 $K^{\pi} = 1^+$ Eigenvalues of QRPA (MeV) 0.045 2.672 2.696 2.877 3.359 4.119

. . .

Strength function not quite ready

Code passes all these tests.

Plan for rest of year

Parallelize calculation of interaction matrix elements

Dimension of QRPA Hamiltonian matrix for ${}^{24}Mg$, $K^{\pi}=1^+$ was 700, and it took 24 hours to get interaction matrix elements with a single processor.

- Implement calculation of strength functions.
- Prepare systematic calculations of even-even nuclei across the entire table of isotopes. Is it possible without sacrificing accuracy?

After that See talk by M. Horoi

A computational question

QRPA equation

$$\sum_{\varsigma\xi} \begin{pmatrix} A & B \\ B^T & A' \end{pmatrix}_{\mu\nu,\varsigma\xi} \begin{pmatrix} X \\ Y \end{pmatrix}_{\varsigma\xi} = \hbar \omega \sum_{\varsigma\xi} \begin{pmatrix} I & O \\ O & -I \end{pmatrix}_{\mu\nu,\varsigma\xi} \begin{pmatrix} X \\ Y \end{pmatrix}_{\varsigma\xi}$$

A and A' are Hermitian; all are real.

ScaLAPACK diagonalization subroutine *pdsygvx* solves

$$\mathcal{H} x = \lambda \mathcal{B} x$$

 \mathscr{F} : symmetric matrix

B : symmetric and positive definite matrix We use this subroutine with

$$\mathscr{F} = \begin{pmatrix} I & O \\ O & -I \end{pmatrix}.$$

We would like a better method.