Coupled-cluster theory within UNEDF

Thomas Papenbrock

and OAK RIDGE NATIONAL LABORATORY

D. J. Dean (ORNL)

G. Hagen (ORNL)

M. Hjorth-Jensen (Oslo)

H. A. Nam (ORNL)

B. Velamur Asokan (ORNL)

- 1. Main accomplishments since last meeting
- 2. Status regarding high-performance computing
- 3. Roadmap for remainder of year-3 and for year-4

Annual UNEDF collaboration meeting

Pack Forest, WA, June 22-26 2009

Research partly funded by the US Department of Energy

Main accomplishments since last meeting

Science:

- 1. Medium-mass nuclei: saturation properties of chiral interactions; computation of densities
- 2. Solution of the center-of-mass problem
- 3. Neutron-rich oxygen isotopes

Computing / algorithm developments:

- 1. Triples correction Λ -CCSD(T) in spherical scheme (rationale: increased precision)
- 2. Parallelization of j-coupled coupled-cluster code (rationale: ensure convergence of "hard" interactions and/or heavier nuclei)

Publication Summary

Submitted articles

- 1. Solution of the center-of-mass problem in nuclear structure calculations, G. Hagen, T. Papenbrock, and D. J. Dean, arXiv:0905.3167, submitted to PRL (2009)
- 2. Helium halo nuclei from low-momentum interactions, S. Bacca, A. Schwenk, G. Hagen, and T. Papenbrock, arXiv:0902.1696, accepted by Eur. Phys. J. A (2009)
- Ab-initio computation of neutron-rich oxygen isotopes, G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, and B. Velamur Asokan, to be submitted to Phys. Rev. C (2009).

Published since July 2008

- 1. Computational aspects of nuclear coupled-cluster theory, D. J. Dean, G. Hagen, M. Hjorth-Jensen, and T. Papenbrock, Comput. Sci. Disc. 1, 015008 (2008)
- Broyden's Method in Nuclear Structure Calculations, A. Baran, A. Bulgac, M. McNeil Forbes, G. Hagen, W. Nazarewicz, N. Schunck, M. V. Stoitsov, Phys. Rev. C 78, 014318 (2008)
- *3. Medium-mass nuclei from chiral nucleon-nucleon interactions*, G. Hagen, T. Papenbrock, D. J. Dean, and M. Hjorth-Jensen, Phys. Rev. Lett. 101, 092502 (2008).
- Comment on "Ab Initio study of 40Ca with an importance-truncated no-core shell model", D. J. Dean, G. Hagen, M. Hjorth-Jensen, T. Papenbrock, A. Schwenk, Phys. Rev. Lett. 101, 119201 (2008).

Invited talks

- "Coupled cluster theory for nuclei", Symposium on "50 Years of Coupled Cluster Theory" INT program Atomic, Chemical, and Nuclear Developments in Coupled Cluster Methods, Seattle, WA, June 30 -July 2, 2008. (GH)
- 2. "Coupled cluster theory for medium-mass nuclei", INT program Atomic, Chemical, and Nuclear Developments in Coupled Cluster Methods, Seattle, WA, June 30 July 2, 2008. (TP)
- 3. "Coupled-cluster theory for medium-mass nuclei", Heraeus workshop "Ab-initio nuclear structure Where do we stand?", Bad Honnef, Germany, July 2008 (TP)
- 4. "Nuclear Coupled-Cluster approach", ENAM'08 on Exotic Nuclei and Atomic Masses. September 7-13 2008, Ryn, Poland (GH)
- 5. "Nuclear coupled-cluster theory", Kernz 08, Queensland, New Zealand, Dec 1-5, 2008. (DJD)
- "Coupled-cluster methods for medium heavy nuclei", From ab initio methods to density-functional theory, CMA-CTCC workshop on computational quantum mechanics, January 13, 2009, UiO, Norway (GH)
- 7. "Coupled-cluster theory for nuclei", 3rd LACM-EFES-JUSTIPEN Workshop, Joint Institute for Heavy Ion Research, Oak Ridge National Laboratory February 23-25, 2009 (GH)
- 8. "Ab-initio Coupled Cluster Theory for Nuclei", INT Program "Effective Field Theories and the Many-Body Problem", Seattle, WA, April 2009 (GH)
- 9. "Tentative solution to the center-of-mass problem", INT Program "Effective Field Theories and the Many-Body Problem", Seattle, WA, May 2009 (TP)
- 10. "Coupled-cluster theory for nuclei", CEA Workshop on Many-Body open quantum systems, Saclay, May 18, 2009 (GH)
- 11. "Coupled-cluster theory for medium-mass nuclei", 8th international conference on Radioactive Ion Beams (RNB-8), Grand Rapids, MI, May 26-30, 2009 (TP)

Accuracy & precision: ⁴He from a chiral N³LO [Enterm & Machleidt]

[Hagen, TP, Dean, arXiv:0905.3167]

- 1. Results exhibit practically no dependence on the employed model space.
- 2. The coupled-cluster method, in its Λ -CCSD(T) approximation, 150keV over binding.
- 3. Independence of model space of N major oscillator shells with frequency ω :

 $N\hbar\omega > \hbar^2\lambda^2/m$ to resolve momentum cutoff λ

 $\hbar\omega < N\hbar^2/(mR^2)$ to resolve nucleus of radius R

Summary: CCSD results with a chiral N³LO (NN only)

Nucleus	E/A	V/A	$\Delta E/A$	R	$R_{\rm exp}$
⁴ He	-5.99	-22.75	1.08	1.86	1.64
¹⁶ O	-6.72	-30.69	1.25	2.71	2.74
^{40}Ca	-7.72	-36.40	0.84	3.24	3.48
^{48}Ca	-7.40	-37.97	1.27	3.22	3.47
⁴⁸ Ni	-6.02	-36.04	1.21	3.50	

[Hagen, TP, Dean, Hjorth-Jensen, PRL 101, 092502 (2008)]

Main results

- 1. Well converged CCSD results with respect to size of model space (< 1% change in binding energy when going from 14 to 15 oscillator shells.
- 2. Three-nucleon force and triples corrections expected to yield ~1MeV additional binding?
- Mirror nuclei ⁴⁸Ca and exotic ⁴⁸Ni differ by 1.38 MeV / A → close to mass-table predictions

How do corrections due to three-body clusters modify this picture?

Triples corrections:

- Triples add about 10% of the CCSD correlation energy; ~0.8 MeV per nucleon
- Entem & Machleidt's N³LO nucleon-nucleon only comes closer than expected (from power counting) to experiment
- Possible show case: ⁴⁸Ca with triples corrections and <u>three-nucleon forces</u>

Center-of-mass problem

Intrinsic nuclear Hamiltonian

$$H_{\rm in} = T - T_{\rm cm} + V ,$$

= $\sum_{1 \le i < j \le A} \left(\frac{(\vec{p}_i - \vec{p}_j)^2}{2mA} + V(\vec{r}_i - \vec{r}_j) \right)$

 H_{in} is invariant under translations; it commutes with <u>any</u> center-of-mass Hamiltonian H_{cm} .

Approach that preserves translational and rotational invariance:

☺ Jacobi coordinates

 \otimes Antisymmetrization scales as A! \rightarrow limited to A<8 or so.

Antisymmetrization best dealt within second quantization:

⊗ No single-particle basis available that consists of simultaneous eigenstates of the angular momentum operator and the momentum operator.

 \odot Within a complete Nh ω oscillator space, the wave function is guaranteed to factorize

Intrinsic wave function ψ_{in} invariant under translation

Center-of-mass wave function ψ_{cm} is Gaussian whose width is set by the oscillator length of the employed oscillator basis

Please note: The factorization is key. The form of ψ_{cm} is irrelevant. It only needs to be the ground state of a suitably chosen center-of-mass Hamiltonian.

¹⁶O with V_{lowk} (1.8/fm, smooth) within CCSD

- 1. Hartree-Fock basis used. Not an $N\hbar\omega$ space
- 2. Ground-state energy varies little with frequency of oscillator basis.
- 3. Ground-state energy obviously independent of center-of-mass energy.
- 4. Center-of-mass energy generally nonzero → coupled-cluster wave function not eigenstate of H_{cm}(ω). [Beware of misconception: this does not imply that the wave function does not factorize.]

However:

- 1. Center-of-mass energy $E_{cm}(\omega) \equiv \langle H_{cm}(\omega) \rangle$ vanishes at $\hbar \omega \approx 20 \text{MeV}$
- 2. At $\hbar\omega \approx 20$ MeV, the coupled-cluster wave function factorizes
- 3. What is ψ_{cm} ? Assume it is a Gaussian with modified width, i.e. ground state of

$$H_{\rm cm}(\tilde{\omega}) = T_{\rm cm} + \frac{1}{2}mA\tilde{\omega}^2 R_{\rm cm}^2 - \frac{3}{2}\hbar\tilde{\omega}$$

Coupled-cluster wave function factorizes to a very good approximation!

Curve becomes practically constant in larger model spaces. Note: spurious CoM excitations are of order 20 MeV $\gg E_{cm}$.

 $\rm E_{\rm cm}$ is slightly negative (size -0.01 MeV) due to non-variational character of coupled-cluster method.

Coupled-cluster state is ground state of suitably chosen center-ofmass Hamiltonian.

Factorization between intrinsic and center-of-mass coordinate realized within high accuracy.

Approximate factorization also observed for "harder" interactions.

Finding valuable for computation of intrinsic densities.

Neutron-rich oxygen isotopes

 Λ =500 MeV potential converges in about 15 major oscillator shells Λ =600 MeV potential converges in about 20 shells

Cutoff dependence \rightarrow dependence of results on short-ranged part of three-nucleon force

Summary of preliminary results

Energies	¹⁶ O	²² O	$^{24}\mathrm{O}$	²⁸ O
$(\Lambda_{\chi} = 500 \text{ MeV})$				
E_0	24.11	50.37	56.19	71.58
$\Delta E_{\rm CCSD}$	-144.77	-175.79	-190.39	-207.67
ΔE_3	-13.31	-19.22	-19.64	-19.85
E	-120.66	-144.64	-153.84	-155.94
$(\Lambda_{\chi} = 600 \text{ MeV})$				
E_0	22.08	46.33	52.94	68.57
$\Delta E_{\rm CCSD}$	-119.04	-156.51	-168.49	-182.42
ΔE_3	-14.95	-20.71	-22.49	-22.86
E	-111.91	-130.89	-138.04	-136.71
Experiment	-127.62	-162.03	-168.38	

Estimate of theoretical uncertainties:

- 1. Finite model space $\leq 2MeV$
- 2. Truncation at triples clusters ~2MeV (educated guess)
- 3. Omission of three-nucleon forces (omitted short-range physics ↔cutoff dependence) ~15MeV

Ab-initio theory cannot rule out a stable ²⁸O.

Three-body forces largest potential contribution that decides this question.

Computational status

Data organization

- Interaction spread across processors
- cluster amplitudes stored locally
- oxygen-16 in 20 shells ~ 1500 processor hours per model space

Challenge

• Number of j-coupled matrix elements of interactions fluctuate strongly for given sets of quantum numbers

• load balancing non-trivial: Calculation of estimated computational cost \rightarrow distribution of data

- scaling (load-balancing) up to few hundred processors
- ideas / input welcome!

Progress for year 3

Proposed work	Status	
Calculations of Ca and Ni isotopes (energies & densities)	^{16,22,24,28} O and ^{40,48} Ca	
Derive and implement triples corrections	Done	
Parallelization of spherical coupled-cluster code	Scales to few hundred processors	
Interface with DFT: response of energy and density to external potentials; Expansion (DME) of CCSD 1-particle density matrix	Fully possible now within CCSD; more accurate triples corrections not yet	
Employ densities for optical potentials (with Ken Amos; with Charlotte Elster)	Under way	

Personnel

UNEDF collaborators

D. J. Dean (presently @ 20% time) → Department of Energy

- G. Hagen
- T. Papenbrock

Jason Holt (TRIUMF \rightarrow ORNL/UT in summer 2009)

CS support: Badri Velamur Asokan (ORNL → private sector), Hai Ah Nam (ORNL)

Development of coupled-cluster method with relevance for UNEDF (by students cosupervised by Hagen and Hjorth-Jensen) Oyvind Jensen (student at University of Bergen; spectroscopic factors) Gustav Jansen (student at University of Oslo; closed shell ±2 nucleons) Johannes Rekkedal (student at University of Oslo; coupled cluster for nuclear matter)

Future plans (remainder of year 3 and for year 4)

- 1. Interface with DFT (response of density to external potentials, check DME)
- 2. Toward ab-initio reactions
 - 1. Spectroscopic factors
 - 2. CC densities as microscopic input for optical potentials / g-folding methods
 - 3. Lorentz integral transform
- 3. Role of three-nucleon forces in medium-mass nuclei