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Outline 
  Reminders about ADLB 

–  What it is (PF 2007) 
–  How to use it (PF 2008) 

  This year:  how it works 
  Recent progress 
  Challenges remaining 
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Master/Slave Algorithms and Load Balancing 

  Advantages 
–  Automatic load balancing 

  Disadvantages 
–  Scalability - master can become bottleneck 

 Wrinkles 
–  Slaves may create new work 
–  Multiple work types and priorities that impose work flow 

Master 

Slave Slave Slave Slave Slave 

Shared 
Work queue 
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The ADLB Vision 
  No explicit master for load balancing;  slaves make calls to ADLB 

library; those subroutines access local and remote data structures 
(remote ones via MPI). 

  Simple Put/Get interface from application code to distributed work 
queue hides most MPI calls 
–  Advantage:  multiple applications may benefit 
–  Wrinkle:  variable-size work units, in Fortran, introduce some 

complexity in memory management 
  Proactive load balancing in background 

–  Advantage:  application never delayed by search for work from 
other slaves 

–  Wrinkle:  scalable work-stealing algorithms not obvious 
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The ADLB Model (no master) 

  Doesn’t really change algorithms in slaves 
  Not a new idea (e.g. Linda) 
  But need scalable, portable, distributed implementation of shared 

work queue 
–  MPI complexity hidden here. 

Slave Slave Slave Slave Slave 

Shared 
Work queue 
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API for a Simple Programming Model 

  Basic calls 
–  ADLB_Init( num_servers, am_server, app_comm) 
–  ADLB_Server() 
–  ADLB_Put( type, priority, len, buf, answer_dest ) 
–  ADLB_Reserve( req_types, handle, len, type, prio, answer_dest) 
–  ADLB_Ireserve( … )  
–  ADLB_Get_Reserved( handle, buffer ) 
–  ADLB_Set_Done() 
–  ADLB_Finalize() 

  A few others, for tuning and debugging 
–  ADLB_{Begin,End}_Batch_Put() 
–  Getting performance statistics with ADLB_Get_info(key) 
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Parallel Sudoku Solver with ADLB 
Program: 

 if (rank = 0) 
     ADLB_Put initial board 
 ADLB_Get board (Reserve+Get) 
 while success  (else done) 

        ooh 
     find first blank square 
     if failure  (problem solved!) 
  print solution 
  ADLB_Set_Done 
     else 
  for each valid value 
      set blank square to value 
      ADLB_Put new board 
  ADLB_Get board 

    end while   
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Work unit =  
      partially completed “board” 
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How it Works 

  After initial Put, all processes execute same loop (no master) 
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Optimizing Within the ADLB Framework 
  Can embed smarter strategies in this algorithm 

–  ooh = “optional optimization here”, to fill in more squares 
–  Even so, potentially a lot of work units for ADLB to manage 

  Can use priorities to address this problem 
–  On ADLB_Put, set priority to the number of filled squares 
–  This will guide depth-first search while ensuring that there is 

enough work to go around 
• How one would do it sequentially 

  Exhaustion automatically detected by ADLB (e.g., proof that there is 
only one solution, or the case of an invalid input board) 
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Experiments with GFMC/ADLB on BG/P 

  Using GFMC to compute the binding energy of 14 neutrons in an 
artificial well ( “neutron drop” = teeny-weeny neutron star ) 

  A weak scaling experiment 

  Recent work:  “micro-parallelization” needed for 12C, OpenMP in 
GFMC. 

BG/P 
cores 

ADLB 
Servers 

Configs 
Time 
(min.) 

Efficiency 
(incl. serv.) 

4K 130 20 38.1 93.8% 

8K 230 40 38.2 93.7% 

16K 455 80 39.6 89.8% 

32K 905 160 44.2 80.4% 
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How It Works 

  Real numbers:  1000 servers out of 32,000 processors on BG/P 
–  And recently introduced other communication paths 

                    

    

Application Processes 
ADLB Servers 

put/get 
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The ADLB Server Logic 
 Main loop: 

–  MPI_Iprobe for message in busy loop (emit diagnostics) 
–  MPI_Recv message 
–  Process according to type (20 types) 

• Update status vector of work stored on remote servers 
• Manage work queue and request queue 
•  (may involve posting MPI_Isends to isend queue) 

–  MPI_Test all requests in isend queue 
–  Return to top of loop 

  The status vector replaces single master or shared memory 
–  Circulates every .1 second at high priority 
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ADLB Uses Multiple MPI Features 
  ADLB_Init returns separate application communicator, so application 

can use MPI for its own purposes if it needs to. 
  Servers are in MPI_Iprobe loop for responsiveness. 
 MPI_Datatypes for some complex, structured messages (status) 
  Servers use nonblocking sends and receives, maintain queue of 

active MPI_Request objects. 
 Queue is traversed and each request kicked with MPI_Test each time 

through loop; could use MPI_Testany. 
  Client side uses MPI_Ssend to implement ADLB_Put in order to 

conserve memory on servers, MPI_Send for other actions. 
  Servers respond to requests with MPI_Rsend since MPI_Irecvs are 

known to be posted by clients before requests. 
 MPI provides portability:  laptop, Linux cluster, SiCortex, BG/P 
 MPI profiling library is used to understand application/ADLB behavior. 
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Looking at GFMC/ADLB with Jumpshot 
(in the good old days) 
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Things Can Get Worse at Larger Scale 
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Experiments Last Fall 
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Experiments Last Fall 
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Good News – Bad News 
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The Need for Tools 
  Understanding the behavior of the coupled application/library is 

difficult. 
–  (Friendly) finger pointing has led to advances 

  Big problem:  everything works fine at 8,000 processors and below 
–  So testing and debugging is cumbersome at best 

  Jumpshot not really usable at very large scale 
  Statistics point to problems, but not to solutions, since time-varying 

behavior is not captured in averages 
  Large amounts of debugging and monitoring output cause their own 

problems 
 We are still developing tools for understanding behavior 

–  At large scale 
–  That varies over time 
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Plotting Statistics Over Time 

20 



Argonne National 
Laboratory 

Tracking Anomalies 
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Problem Apparently Fixed 
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Multiple Load-Balancing Regimes 
  The original objective was to do balancing of processing load 
 Much of the last year has been spent on balancing of the memory 

load 
–  Work units may to be moved from server to server 
–  Even proactively 

 We may now be having problems that can only be solved by 
balancing of the message-passing load. 
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The “Official” Questions 
  What are the main accomplishments since the last meeting? Is your 

Year-3 plan well on track? 

–  Main accomplishments


•  Conversion of GFMC application code to use OpenMP

•  First large scale 12C calculations

•  Scaling to 8 racks on BG/P


–  Grappling with scaling problems going from 8K to 32K processes

  What are the aspects of your science that require high-performance 

computing?     OR     What problems in high performance computing 
are you working on in general?

–  Problems in high-performance computing:


•  How to exploit HPC computers with 100,000 processors

•  How to simplify application programming in general

•  ADLB is a demonstration of what can be achieved with a semi-

specialized  library




Argonne National 
Laboratory 25 

The Questions (cont.) 
  What are the major computational issues? Are there any questions you would 

like to bring to the attention of our CS/AM collaborators?     OR     Are there 
general capabilities of your computer science work that might be of interest to 
other physicists than the ones you are currently working with?

–  ADLB is a general-purpose library which we are developing / testing / 

debugging / tuning in the context of GFMC

–  But worth a look for any application in which the parallelism is task-based 

and there is little communication among the tasks.

–  ADLB Web site:   http://www.cs.mtsu.edu/~rbutler/adlb


  What is the detailed roadmap of your project for the remaining part of Year-3 and 
Year-4? Could you sketch the work plan for Year 5?

–  Near-term:  get to 16 racks, maybe 32, with good efficiency scaling

–  Better tools for understanding behavior and performance

–  Far-term: explore use of MPI RMA to further distribute work


  Are there any "showcase" (i.e.,  of Nature/Science caliber) physics and 
computational questions that you are hoping to answer in Years 3 and 4?

–  Itʼs up to Steve!
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Conclusions 
  ADLB is a research project working its way toward being useful 

general-purpose software. 
 More users sought, especially those with more straightforward 

applications than GFMC! 
  Its point is to explore whether extreme scalability in an application 

can be achieved without extreme complexity in application code. 
 Much has been learned, understood, and achieved in the first few 

years. 
  But we are not finished. 

–  Which is good, in a way . 

26 


