
The Asynchronous
Dynamic Load-Balancing
Library

Rusty Lusk, Steve Pieper, Ralph Butler,
Anthony Chan

Mathematics and Computer Science Division

Nuclear Physics Division

Argonne National Laboratory

Argonne National
Laboratory

Outline
  Reminders about ADLB

–  What it is (PF 2007)
–  How to use it (PF 2008)

  This year: how it works
  Recent progress
  Challenges remaining

2

Argonne National
Laboratory 3

Master/Slave Algorithms and Load Balancing

  Advantages
–  Automatic load balancing

  Disadvantages
–  Scalability - master can become bottleneck

 Wrinkles
–  Slaves may create new work
–  Multiple work types and priorities that impose work flow

Master

Slave Slave Slave Slave Slave

Shared
Work queue

Argonne National
Laboratory 4

The ADLB Vision
  No explicit master for load balancing; slaves make calls to ADLB

library; those subroutines access local and remote data structures
(remote ones via MPI).

  Simple Put/Get interface from application code to distributed work
queue hides most MPI calls
–  Advantage: multiple applications may benefit
–  Wrinkle: variable-size work units, in Fortran, introduce some

complexity in memory management
  Proactive load balancing in background

–  Advantage: application never delayed by search for work from
other slaves

–  Wrinkle: scalable work-stealing algorithms not obvious

Argonne National
Laboratory 5

The ADLB Model (no master)

  Doesn’t really change algorithms in slaves
  Not a new idea (e.g. Linda)
  But need scalable, portable, distributed implementation of shared

work queue
–  MPI complexity hidden here.

Slave Slave Slave Slave Slave

Shared
Work queue

Argonne National
Laboratory 6

API for a Simple Programming Model

  Basic calls
–  ADLB_Init(num_servers, am_server, app_comm)
–  ADLB_Server()
–  ADLB_Put(type, priority, len, buf, answer_dest)
–  ADLB_Reserve(req_types, handle, len, type, prio, answer_dest)
–  ADLB_Ireserve(…)
–  ADLB_Get_Reserved(handle, buffer)
–  ADLB_Set_Done()
–  ADLB_Finalize()

  A few others, for tuning and debugging
–  ADLB_{Begin,End}_Batch_Put()
–  Getting performance statistics with ADLB_Get_info(key)

Argonne National
Laboratory 7

Parallel Sudoku Solver with ADLB
Program:

 if (rank = 0)
 ADLB_Put initial board
 ADLB_Get board (Reserve+Get)
 while success (else done)

 ooh
 find first blank square
 if failure (problem solved!)
 print solution
 ADLB_Set_Done
 else
 for each valid value
 set blank square to value
 ADLB_Put new board
 ADLB_Get board

 end while

1 9 7

7 8
3 1 6

1 9

2 5 3
7 1

5

5 6
7 9 1 8 6 2

3

2

6
8

Work unit =
 partially completed “board”

Argonne National
Laboratory 8

How it Works

  After initial Put, all processes execute same loop (no master)

1 9 7

7 8
3 1 6

1 9

2 5 3
7 1

5

5 6
7 9 1 8 6 2

3

2

6
8

Pool
 of

Work
Units

1 9 7

7 8
3 1 6

1 9

2 5 3
7 1

5

5 6
7 9 1 8 6 2

3

2

6
8

1 6 9 7

7 8
3 1 6

1 9

2 5 3
7 1

5

5 6
7 9 1 8 6 2

3

2

6
8

1 4 9 7

7 8
3 1 6

1 9

2 5 3
7 1

5

5 6
7 9 1 8 6 2

3

2

6
8

1 8 9 7

7 8
3 1 6

1 9

2 5 3
7 1

5

5 6
7 9 1 8 6 2

3

2

6
8

4 6 8

Get

Put

Argonne National
Laboratory 9

Optimizing Within the ADLB Framework
  Can embed smarter strategies in this algorithm

–  ooh = “optional optimization here”, to fill in more squares
–  Even so, potentially a lot of work units for ADLB to manage

  Can use priorities to address this problem
–  On ADLB_Put, set priority to the number of filled squares
–  This will guide depth-first search while ensuring that there is

enough work to go around
• How one would do it sequentially

  Exhaustion automatically detected by ADLB (e.g., proof that there is
only one solution, or the case of an invalid input board)

Argonne National
Laboratory 10

Experiments with GFMC/ADLB on BG/P

  Using GFMC to compute the binding energy of 14 neutrons in an
artificial well (“neutron drop” = teeny-weeny neutron star)

  A weak scaling experiment

  Recent work: “micro-parallelization” needed for 12C, OpenMP in
GFMC.

BG/P
cores

ADLB
Servers

Configs
Time
(min.)

Efficiency
(incl. serv.)

4K 130 20 38.1 93.8%

8K 230 40 38.2 93.7%

16K 455 80 39.6 89.8%

32K 905 160 44.2 80.4%

Argonne National
Laboratory 11

How It Works

  Real numbers: 1000 servers out of 32,000 processors on BG/P
–  And recently introduced other communication paths

Application Processes
ADLB Servers

put/get

Argonne National
Laboratory

The ADLB Server Logic
 Main loop:

–  MPI_Iprobe for message in busy loop (emit diagnostics)
–  MPI_Recv message
–  Process according to type (20 types)

• Update status vector of work stored on remote servers
• Manage work queue and request queue
•  (may involve posting MPI_Isends to isend queue)

–  MPI_Test all requests in isend queue
–  Return to top of loop

  The status vector replaces single master or shared memory
–  Circulates every .1 second at high priority

12

Argonne National
Laboratory 13

ADLB Uses Multiple MPI Features
  ADLB_Init returns separate application communicator, so application

can use MPI for its own purposes if it needs to.
  Servers are in MPI_Iprobe loop for responsiveness.
 MPI_Datatypes for some complex, structured messages (status)
  Servers use nonblocking sends and receives, maintain queue of

active MPI_Request objects.
 Queue is traversed and each request kicked with MPI_Test each time

through loop; could use MPI_Testany.
  Client side uses MPI_Ssend to implement ADLB_Put in order to

conserve memory on servers, MPI_Send for other actions.
  Servers respond to requests with MPI_Rsend since MPI_Irecvs are

known to be posted by clients before requests.
 MPI provides portability: laptop, Linux cluster, SiCortex, BG/P
 MPI profiling library is used to understand application/ADLB behavior.

Argonne National
Laboratory 14

Looking at GFMC/ADLB with Jumpshot
(in the good old days)

Argonne National
Laboratory 15

Things Can Get Worse at Larger Scale

15

Argonne National
Laboratory 16

Experiments Last Fall

Argonne National
Laboratory 17

Experiments Last Fall

Argonne National
Laboratory

Good News – Bad News

18

Argonne National
Laboratory

The Need for Tools
  Understanding the behavior of the coupled application/library is

difficult.
–  (Friendly) finger pointing has led to advances

  Big problem: everything works fine at 8,000 processors and below
–  So testing and debugging is cumbersome at best

  Jumpshot not really usable at very large scale
  Statistics point to problems, but not to solutions, since time-varying

behavior is not captured in averages
  Large amounts of debugging and monitoring output cause their own

problems
 We are still developing tools for understanding behavior

–  At large scale
–  That varies over time

19

Argonne National
Laboratory

Plotting Statistics Over Time

20

Argonne National
Laboratory

Tracking Anomalies

21

Argonne National
Laboratory

Problem Apparently Fixed

22

Argonne National
Laboratory

Multiple Load-Balancing Regimes
  The original objective was to do balancing of processing load
 Much of the last year has been spent on balancing of the memory

load
–  Work units may to be moved from server to server
–  Even proactively

 We may now be having problems that can only be solved by
balancing of the message-passing load.

23

Argonne National
Laboratory 24

The “Official” Questions
  What are the main accomplishments since the last meeting? Is your

Year-3 plan well on track?

–  Main accomplishments

•  Conversion of GFMC application code to use OpenMP

•  First large scale 12C calculations

•  Scaling to 8 racks on BG/P

–  Grappling with scaling problems going from 8K to 32K processes

  What are the aspects of your science that require high-performance

computing? OR What problems in high performance computing
are you working on in general?

–  Problems in high-performance computing:

•  How to exploit HPC computers with 100,000 processors

•  How to simplify application programming in general

•  ADLB is a demonstration of what can be achieved with a semi-

specialized library

Argonne National
Laboratory 25

The Questions (cont.)
  What are the major computational issues? Are there any questions you would

like to bring to the attention of our CS/AM collaborators? OR Are there
general capabilities of your computer science work that might be of interest to
other physicists than the ones you are currently working with?

–  ADLB is a general-purpose library which we are developing / testing /

debugging / tuning in the context of GFMC

–  But worth a look for any application in which the parallelism is task-based

and there is little communication among the tasks.

–  ADLB Web site: http://www.cs.mtsu.edu/~rbutler/adlb

  What is the detailed roadmap of your project for the remaining part of Year-3 and
Year-4? Could you sketch the work plan for Year 5?

–  Near-term: get to 16 racks, maybe 32, with good efficiency scaling

–  Better tools for understanding behavior and performance

–  Far-term: explore use of MPI RMA to further distribute work

  Are there any "showcase" (i.e., of Nature/Science caliber) physics and
computational questions that you are hoping to answer in Years 3 and 4?

–  Itʼs up to Steve!

Argonne National
Laboratory

Conclusions
  ADLB is a research project working its way toward being useful

general-purpose software.
 More users sought, especially those with more straightforward

applications than GFMC!
  Its point is to explore whether extreme scalability in an application

can be achieved without extreme complexity in application code.
 Much has been learned, understood, and achieved in the first few

years.
  But we are not finished.

–  Which is good, in a way .

26

