A

Argonne

NATIONAL
LABORATORY

... for a brighter future

UChicago »

Argonne

PP<=S" Office of
Science

The Asynchronous
Dynamic Load-Balancing
Library

Rusty Lusk, Steve Pieper, Ralph Butler,
Anthony Chan

Mathematics and Computer Science Division
Nuclear Physics Division
Argonne National Laboratory

Outline

B Reminders about ADLB
— What itis (PF 2007)
— How to use it (PF 2008)
M This year: how it works
B Recent progress
B Challenges remaining

‘ Argonne National

Laboratory

Master/Slave Algorithms and Load Balancing

y Shared
SN Work queue
Slave Slave Slave Slave Slave

B Advantages
— Automatic load balancing
B Disadvantages
— Scalability - master can become bottleneck
B Wrinkles
— Slaves may create new work
— Multiple work types and priorities that impose work flow

‘ Argonne National

Laboratory

The ADLB Vision

B No explicit master for load balancing; slaves make calls to ADLB
library; those subroutines access local and remote data structures
(remote ones via MPI).

B Simple Put/Get interface from application code to distributed work
queue hides most MPI calls

— Advantage: multiple applications may benefit

— Wrinkle: variable-size work units, in Fortran, introduce some
complexity in memory management

B Proactive load balancing in background

— Advantage: application never delayed by search for work from
other slaves

— Wrinkle: scalable work-stealing algorithms not obvious

A Argonne National B
Laboratory

The ADLB Model (no master)

Slave Slave Slave Slave Slave

Shared

Work queue

B Doesn't really change algorithms in slaves
B Not a new idea (e.g. Linda)

B But need scalable, portable, distributed implementation of shared
work queue

— MPI complexity hidden here.

‘ Argonne National
\ Laboratory

API for a Simple Programming Model

M Basic calls
— ADLB_Init(num_servers, am_server, app_comm)
— ADLB_Server()
— ADLB_Put(type, priority, len, buf, answer_dest)
— ADLB_Reserve(req_types, handle, len, type, prio, answer_dest)
— ADLB lIreserve(...)
— ADLB_Get Reserved(handle, buffer)
— ADLB_Set Done()
— ADLB_Finalize()
B A few others, for tuning and debugging
— ADLB_{Begin,End} Batch_Put()
— Getting performance statistics with ADLB_Get_info(key)

‘ Argonne National
\ Laboratory

Parallel Sudoku Solver with ADLB

Program:
112 0 7 if (rank = 0)

ADLB _Put initial board
ADLB_Get board (Reserve+Get)
while success (else done)

ooh
6 find first blank square
if failure (problem solved!)
print solution
9 ADLB_Set Done
1 else
2 5 318 for each valid value
set blank square to value
Work unit = ADLB_Put new board

partially completed “board” ADLB_Get board
end while

A Argonne National B
Laboratory 7

N
N W] O

N =01 O©
o

How it Works :

N [CLOJoo |

1‘ii 9 7

N

Get

\I
[ec][¢)]
N W |O

1@ 9 7 11 8] 6 9 7 1@ 9 7
h 6|1 h 61 N 6|1
7] |8 7] |8 7] 18
5|3 513 5|3
7] Tol1] [8l2] |6 7] Tol1] |8l2] |e6 7] Tol1] [8l2] |s
5|6 5|6 5|6
11 |9 1 HE 11 19
6|7 1 6|7 1 6|7 1
2 5 3|8 2 5 3[8 2 5 3|8
Put

W After initial Put, all processes execute same loop (no master)

A Argonne National
Laboratory

Optimizing Within the ADLB Framework

B Can embed smarter strategies in this algorithm

— ooh = “optional optimization here”, to fill in more squares

— Even so, potentially a /ot of work units for ADLB to manage
B Can use priorities to address this problem

— On ADLB_Put, set priority to the number of filled squares

— This will guide depth-first search while ensuring that there is
enough work to go around

* How one would do it sequentially

B Exhaustion automatically detected by ADLB (e.g., proof that there is
only one solution, or the case of an invalid input board)

J-A Argonne National
Laboratory

Experiments with GFMC/ADLB on BG/P

B Using GFMC to compute the binding energy of 14 neutrons in an
artificial well (“neutron drop” = teeny-weeny neutron star)

B A weak scaling experiment

BG/P ADLB _ Time Efficiency
Configs . :
cores Servers (min.) (incl. serv.)
4K 130 20 38.1 93.8%
8K 230 40 38.2 93.7%
16K 455 80 39.6 89.8%
32K 905 160 44.2 80.4%

B Recent work: “micro-parallelization” needed for 2C, OpenMP in

GFMC.

A Argonne National B
Laboratory

How It Works
QOOOOO

Q Application Processes
@ ADLB Servers

B Real numbers: 1000 servers out of 32,000 processors on BG/P
— And recently introduced other communication paths

‘ Argonne National

Laboratory

The ADLB Server Logic

® Main loop:
— MPI_Iprobe for message in busy loop (emit diagnostics)
— MPI_Recv message
— Process according to type (20 types)
e Update status vector of work stored on remote servers
* Manage work queue and request queue
* (may involve posting MPI _Isends to isend queue)
— MPI_Test all requests in isend queue
— Return to top of loop
B The status vector replaces single master or shared memory
— Circulates every .1 second at high priority

‘_f“ Argonne National
Laboratory

ADLB Uses Multiple MPI Features

® ADLB Init returns separate application communicator, so application
can use MPI for its own purposes if it needs to.

B Servers are in MPI_lprobe loop for responsiveness.
B MPI_Datatypes for some complex, structured messages (status)

B Servers use nonblocking sends and receives, maintain queue of
active MPI_Request objects.

B Queue is traversed and each request kicked with MPI_Test each time
through loop; could use MPI_Testany.

B Client side uses MPI_Ssend to implement ADLB_Put in order to
conserve memory on servers, MPl_Send for other actions.

B Servers respond to requests with MPIl_Rsend since MPI_Irecvs are
known to be posted by clients before requests.

B MPI provides portability: laptop, Linux cluster, SiCortex, BG/P
B MPI profiling library is used to understand application/ADLB behavior.

A Argonne National B
Laboratory

Looking at GFMC/ADLB with Jumpshot
(in the good old days)

meLine : np300mpilog.slog2 <Process View>
Alv|[F B HERIEN=IES DKM @0
Lowest / Max. Depth * Zoom Level Global Min Time View Init Time Zoom Focus Time View Final Time Global Max Time Time Per Pixel Row
1 i 0.000475336 75.9835468381 76.0529975657 76.122048486 235 34514811 00001122691 o
Row Count
Cumulativ... & TimeLines 40.86
259 a
260
261
262 281
263
264
265
266
267 241
268
269
270 —— — — — — e —
271 I S _.=‘l | P i =
21 | — — il — 1
273 I T I I S (I y ¢ 201
274 [| I | L | | L
275 [| I | I |]
276 [| I | I | |
277 [| I | [|
278 [N | I | I | | | 161
279 S T I | | | |
280 - T T | R | | | -
281 I L B | [|
282 [7 I A]
283 (5 1 [121
284 /N 2 I R 1
285 I 7 N | 1
286 [) A I | L 7 AN meLine : np300mpilog.slog2 <Process View>
287 N 7 R | R i .- OO %
288 I | | 1 AN & & @ @
289 ey
290 I e s 1 A s e I (il B IR] a Row
201] | e | 76.0529975657 76.0540828312 235.34514811 0.0000017545 Row Count
292 I | e | 1 TimeLines 40.86
203 | e
294 I e | ; A | | | !
2905 4 ¢ oy 4}
296 ¢ v r 4}
297 v v 281
298 | | _!=_ .
299 v | y
@ world_rank 1 f]]]] 1] 1 Fit All Row 201
75.9875 76.00 76.0125 76.025 76.0375 76.05 76.0625 76.075 76.0875 76.10 76.1125
< > Y Y S 5 S
271 ——.z:
272 I . o I I N A L
273 -—-=-—l_‘—- - 201
274 [we—— ;9
275 @ ;i "}
276 | e e I
277 I e 1
278 e e A 161
279 _-_|I__._
280 .~ I e e I |
281 I e e .
282 e I
283 _-_ll__ _ 121
284 | e 1 1
285 I e |
286 I 2 T .
287 r -~ @ 1}
288 _— a
289 Ty Ty
290 0% 0% 7}
291 0000000000000}
2o I
2o 7} -4
294
295 0000000000000}
296]
297 I
pyeme@ ==] L
299 | N
id, k = =
@world_ran
- i i i i i i i i i i i L
76.052 76.0522 76.0524 76.0526 76.0528 76.053 76.0532 76.0534 76.0536 76.0538 76.054
7 T In

Argonne National
Laboratory

7 § § ¥ i i 7 f 2Jk
?J%" > UL
| - e

Things Can Get Worse at Larger Scale

<Process View>

TimeLine : adlb.14n-m0.np256.mic-a.mpilog.256k.slog2

L@

@

Zoom Focus Time

%%

a[=[a]a

<[>][a]

Global Min Time
0.0001843647

14

7

Lowest / Max. Depth : Zoom Level

A

Global Max Time Time Per Pixel

View Final Time

View Init Time

3

TimeLines -

192.8234287273 192.8424336957 286.2358403682 0.0000114394

192.825903744

Al

I

;i

WL

i

|

Y T o

]

A

v

192.832 192.834 192.836 192.838 192.84 192.84.
Time (seconds)

192.83

192.828

|

“ -
< z o]
: c -
vililao o 0 N m T MmO N OO H N M T N O N OO AN M T IO N® OO N oM N \
THEl A NN N N N N NN NN M MMM Mm®mMm®Mm®MmM®mMm®mMmM®ST T T T T T T T T LT AN A A A A - (1]
SIE/N NN AN ANANANNNNNN NN NN NN NN NN NN NN NN NN NN NN NN N D -
. - - - - - - -0 - - - - 5
m,l\DD[DD[DD[DD[[I_D[M_D[\D[\D,’\DF\DD[DD[D 2 ﬁ o
S v Ke]
Rl

1]
c
[©]
S
(1]
Z
(]
c
c
o

A Arg

Experiments Last Fall

1 OOOO I I I I I I I I T

4000 — —

1000 —

400 — —

Speed up vs 64 nodes

100 — —

L l | l | |
100 400 1000 4000 10000

Nodes

N Argonne National
Laboratory

A

Experiments Last Fall

80

Efficiency (%)
o o)) ~J ~J] ~J] ~] ~]
=)} e c S — (o)) e

N
N

Argonne National
Laboratory

100

400

1000
Nodes

4000

10000

17

A

Good News — Bad News

Argonne National
Laboratory

RESULTS SO FAR

ADLB performance is very good up to 8192 nodes (32,768 cores)

Efficiency in %

100

90

o0
)

J
)

60

Efficiency = compute_time/wall_time — 9 Jun 2009

I ‘ I || T | ‘ I ‘ I I| | | I ‘ (I‘
ADLB Jun 2009
o -9

s .

B ~©
I ADLB+OMP & * *—_

\.\
\

ADLB+OMP

12C

102 103 10*
Number of nodes (4 OMP processes per node)

18

The Need for Tools

B Understanding the behavior of the coupled application/library is
difficult.

— (Friendly) finger pointing has led to advances

B Big problem: everything works fine at 8,000 processors and below
— So testing and debugging is cumbersome at best

B Jumpshot not really usable at very large scale

B Statistics point to problems, but not to solutions, since time-varying
behavior is not captured in averages

B Large amounts of debugging and monitoring output cause their own
problems

B We are still developing tools for understanding behavior
— At large scale
— That varies over time

f" Argonne National :
Laboratory f

A

Plotting Statistics Over Time

12C — slow W - 1024 nodes - 86.6% efficiency — 1 Jun 09

800

600

Events/second

200

Argonne National
Laboratory

Time (minutes)

20

Tracking Anomalies

12C ~ 16,384 BGP nodes — ADLBm383-t1 — 6 Jun 09

|
400~ = v ~

| — W _
100 Jf @ @ - -

i

o ;
| RV A ‘:

0.1~ Undirected work packages from O to 22 minutes; total reserve min = 87638 —
| ! | ! | ! | ! |
0.1 05 1 5 10 50 100 500 1000 5000

Dwell time (seconds)

p—
o
|

Reserve time (seconds)
AN —
o @ S
[|
NS
N

<
~
|

£a Argonne National

Laboratory

Problem Apparently Fixed

12C - 16,384 BGP nodes — ADLBm383-t1 — 6 Jun 09

| |

400 = .
)
100} o
N
__40. @ |
E 7%
: g @Ff 2972
e (PO
2
O
10t -
| s /\ A _
04f —y -
0.1 All packages ‘]
50100 500 1000 5000

Dwell time (seconds)

N Argonne National
' Laboratory

Multiple Load-Balancing Regimes

B The original objective was to do balancing of processing load

B Much of the last year has been spent on balancing of the memory
load

— Work units may to be moved from server to server
— Even proactively

B We may now be having problems that can only be solved by
balancing of the message-passing load.

‘ Argonne National

Laboratory

The “Official” Questions

B What are the main accomplishments since the last meeting? Is your
Year-3 plan well on track?

— Main accomplishments
« Conversion of GFMC application code to use OpenMP
» First large scale '°C calculations
e Scaling to 8 racks on BG/P
— Grappling with scaling problems going from 8K to 32K processes

B What are the aspects of your science that require high-performance
computing? OR What problems in high performance computing
are you working on in general?

— Problems in high-performance computing:
e How to exploit HPC computers with 100,000 processors
* How to simplify application programming in general

» ADLB is a demonstration of what can be achieved with a semi-
specialized library

A Argonne National E
Laboratory

The Questions (cont.)

B What are the major computational issues? Are there any questions you would
like to bring to the attention of our CS/AM collaborators? OR Are there
general capabilities of your computer science work that might be of interest to
other physicists than the ones you are currently working with?

— ADLB is a general-purpose library which we are developing / testing /
debugging / tuning in the context of GFMC

— But worth a look for any application in which the parallelism is task-based
and there is little communication among the tasks.

— ADLB Web site: http://www.cs.mtsu.edu/~rbutler/adlb

B What is the detailed roadmap of your project for the remaining part of Year-3 and
Year-4? Could you sketch the work plan for Year 57

— Near-term: get to 16 racks, maybe 32, with good efficiency scaling
— Better tools for understanding behavior and performance
— Far-term: explore use of MPlI RMA to further distribute work

B Are there any "showcase" (i.e., of Nature/Science caliber) physics and
computational questions that you are hoping to answer in Years 3 and 47

— It’s up to Steve!

A Argonne National [3
Laboratory

Conclusions

B ADLB is a research project working its way toward being useful
general-purpose software.

B More users sought, especially those with more straightforward
applications than GFMC!

B [ts point is to explore whether extreme scalability in an application
can be achieved without extreme complexity in application code.

B Much has been learned, understood, and achieved in the first few
years.

B But we are not finished.

— Which is good, in a way ©.

‘_f“ Argonne National
Laboratory

