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Outline

B Reminders about ADLB
— What itis (PF 2007)
— How to use it (PF 2008)
M This year: how it works
B Recent progress
B Challenges remaining
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Master/Slave Algorithms and Load Balancing

y Shared
SN Work queue
Slave Slave Slave Slave Slave

B Advantages
— Automatic load balancing
B Disadvantages
— Scalability - master can become bottleneck
B Wrinkles
— Slaves may create new work
— Multiple work types and priorities that impose work flow

‘ Argonne National

Laboratory




The ADLB Vision

B No explicit master for load balancing; slaves make calls to ADLB
library; those subroutines access local and remote data structures
(remote ones via MPI).

B Simple Put/Get interface from application code to distributed work
queue hides most MPI calls

— Advantage: multiple applications may benefit

— Wrinkle: variable-size work units, in Fortran, introduce some
complexity in memory management

B Proactive load balancing in background

— Advantage: application never delayed by search for work from
other slaves

— Wrinkle: scalable work-stealing algorithms not obvious
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The ADLB Model (no master)

Slave Slave Slave Slave Slave

Shared

Work queue

B Doesn't really change algorithms in slaves
B Not a new idea (e.g. Linda)

B But need scalable, portable, distributed implementation of shared
work queue

— MPI complexity hidden here.
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API for a Simple Programming Model

M Basic calls
— ADLB_Init( num_servers, am_server, app_comm)
— ADLB_Server()
— ADLB_Put( type, priority, len, buf, answer_dest )
— ADLB_Reserve( req_types, handle, len, type, prio, answer_dest)
— ADLB lIreserve( ... )
— ADLB_Get Reserved( handle, buffer )
— ADLB_Set Done()
— ADLB_Finalize()
B A few others, for tuning and debugging
— ADLB_{Begin,End} Batch_Put()
— Getting performance statistics with ADLB_Get_info(key)
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Parallel Sudoku Solver with ADLB

Program:
112 0 7 if (rank = 0)

ADLB _Put initial board
ADLB_Get board (Reserve+Get)
while success (else done)

ooh
6 find first blank square
if failure (problem solved!)
print solution
9 ADLB_Set Done
1 else
2 5 318 for each valid value
set blank square to value
Work unit = ADLB_Put new board

partially completed “board” ADLB_Get board
end while
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How it Works :
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W After initial Put, all processes execute same loop (no master)
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Optimizing Within the ADLB Framework

B Can embed smarter strategies in this algorithm

— ooh = “optional optimization here”, to fill in more squares

— Even so, potentially a /ot of work units for ADLB to manage
B Can use priorities to address this problem

— On ADLB_Put, set priority to the number of filled squares

— This will guide depth-first search while ensuring that there is
enough work to go around

* How one would do it sequentially

B Exhaustion automatically detected by ADLB (e.g., proof that there is
only one solution, or the case of an invalid input board)
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Experiments with GFMC/ADLB on BG/P

B Using GFMC to compute the binding energy of 14 neutrons in an
artificial well ( “neutron drop” = teeny-weeny neutron star )

B A weak scaling experiment

BG/P ADLB _ Time Efficiency
Configs . :
cores Servers (min.) (incl. serv.)
4K 130 20 38.1 93.8%
8K 230 40 38.2 93.7%
16K 455 80 39.6 89.8%
32K 905 160 44.2 80.4%

B Recent work: “micro-parallelization” needed for 2C, OpenMP in

GFMC.
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How It Works
QOOOOO

Q Application Processes
@ ADLB Servers

B Real numbers: 1000 servers out of 32,000 processors on BG/P
— And recently introduced other communication paths
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The ADLB Server Logic

® Main loop:
— MPI_Iprobe for message in busy loop (emit diagnostics)
— MPI_Recv message
— Process according to type (20 types)
e Update status vector of work stored on remote servers
* Manage work queue and request queue
* (may involve posting MPI _Isends to isend queue)
— MPI_Test all requests in isend queue
— Return to top of loop
B The status vector replaces single master or shared memory
— Circulates every .1 second at high priority
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ADLB Uses Multiple MPI Features

® ADLB Init returns separate application communicator, so application
can use MPI for its own purposes if it needs to.

B Servers are in MPI_lprobe loop for responsiveness.
B MPI_Datatypes for some complex, structured messages (status)

B Servers use nonblocking sends and receives, maintain queue of
active MPI_Request objects.

B Queue is traversed and each request kicked with MPI_Test each time
through loop; could use MPI_Testany.

B Client side uses MPI_Ssend to implement ADLB_Put in order to
conserve memory on servers, MPl_Send for other actions.

B Servers respond to requests with MPIl_Rsend since MPI_Irecvs are
known to be posted by clients before requests.

B MPI provides portability: laptop, Linux cluster, SiCortex, BG/P
B MPI profiling library is used to understand application/ADLB behavior.

A Argonne National B
Laboratory




Looking at GFMC/ADLB with Jumpshot
(in the good old days)
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Things Can Get Worse at Larger Scale

<Process View>

TimeLine : adlb.14n-m0.np256.mic-a.mpilog.256k.slog2
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Experiments Last Fall
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Experiments Last Fall
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Good News — Bad News
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RESULTS SO FAR

ADLB performance is very good up to 8192 nodes (32,768 cores)
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The Need for Tools

B Understanding the behavior of the coupled application/library is
difficult.

— (Friendly) finger pointing has led to advances

B Big problem: everything works fine at 8,000 processors and below
— So testing and debugging is cumbersome at best

B Jumpshot not really usable at very large scale

B Statistics point to problems, but not to solutions, since time-varying
behavior is not captured in averages

B Large amounts of debugging and monitoring output cause their own
problems

B We are still developing tools for understanding behavior
— At large scale
— That varies over time
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Plotting Statistics Over Time

12C — slow W - 1024 nodes - 86.6% efficiency — 1 Jun 09
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Tracking Anomalies

12C ~ 16,384 BGP nodes — ADLBm383-t1 — 6 Jun 09
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Problem Apparently Fixed

12C - 16,384 BGP nodes — ADLBm383-t1 — 6 Jun 09
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Multiple Load-Balancing Regimes

B The original objective was to do balancing of processing load

B Much of the last year has been spent on balancing of the memory
load

— Work units may to be moved from server to server
— Even proactively

B We may now be having problems that can only be solved by
balancing of the message-passing load.
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The “Official” Questions

B What are the main accomplishments since the last meeting? Is your
Year-3 plan well on track?

— Main accomplishments
« Conversion of GFMC application code to use OpenMP
» First large scale '°C calculations
e Scaling to 8 racks on BG/P
— Grappling with scaling problems going from 8K to 32K processes

B What are the aspects of your science that require high-performance
computing? OR  What problems in high performance computing
are you working on in general?

— Problems in high-performance computing:
e How to exploit HPC computers with 100,000 processors
* How to simplify application programming in general

» ADLB is a demonstration of what can be achieved with a semi-
specialized library
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The Questions (cont.)

B What are the major computational issues? Are there any questions you would
like to bring to the attention of our CS/AM collaborators? OR  Are there
general capabilities of your computer science work that might be of interest to
other physicists than the ones you are currently working with?

— ADLB is a general-purpose library which we are developing / testing /
debugging / tuning in the context of GFMC

— But worth a look for any application in which the parallelism is task-based
and there is little communication among the tasks.

— ADLB Web site: http://www.cs.mtsu.edu/~rbutler/adlb

B What is the detailed roadmap of your project for the remaining part of Year-3 and
Year-4? Could you sketch the work plan for Year 57

— Near-term: get to 16 racks, maybe 32, with good efficiency scaling
— Better tools for understanding behavior and performance
— Far-term: explore use of MPlI RMA to further distribute work

B Are there any "showcase" (i.e., of Nature/Science caliber) physics and
computational questions that you are hoping to answer in Years 3 and 47

— It’s up to Steve!
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Conclusions

B ADLB is a research project working its way toward being useful
general-purpose software.

B More users sought, especially those with more straightforward
applications than GFMC!

B [ts point is to explore whether extreme scalability in an application
can be achieved without extreme complexity in application code.

B Much has been learned, understood, and achieved in the first few
years.

B But we are not finished.

— Which is good, in a way ©.
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