
Work Plan

Rest of Year 3

I Finish speed-up (and perhaps ADLB implementation) in next
month or two

I Examine some drip-line resonances (pygmy and giant)

I Begin (at least) systematics for 2+
2 , 2+

3 (0+
2 ) states.

I Begin (at least) development of charge-changing code

Year 4

I Apply charge-exchange code to r -process β-decay, ββ decay.

I Begin (at least) development of spherical 2nd RPA

Year 5?

I 2nd QRPA?



Work Plan

Rest of Year 3

I Finish speed-up (and perhaps ADLB implementation) in next
month or two

I Examine some drip-line resonances (pygmy and giant)

I Begin (at least) systematics for 2+
2 , 2+

3 (0+
2 ) states.

I Begin (at least) development of charge-changing code

Year 4

I Apply charge-exchange code to r -process β-decay, ββ decay.

I Begin (at least) development of spherical 2nd RPA

Year 5?

I 2nd QRPA?



Charge-Exchange Code

Will be faster

I About half as many 2 quasiparticle states (1 neutron, 1 proton
only), i.e. number of matrix elements smaller by 4.

I Fewer terms in Skyrme interaction participate (only np).

I No Coulomb interaction

I No spurious states

I Need only low-multipolarity states, below about 15 MeV.

Plus, straightforward to construct from like-particle code.

But ∃ issues in application. . .

I Lots of nuclei figure in the r process (incl. odd nuclei)

I Issue of T = 0 pairing

I Additional overlap issue for ββ decay.
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Time-Dependent DFT

Runge-Gross-Kohn-Sham-etc.

Add time-dependent operator Ĝ (t) to the nuclear Hamiltonian,
and assume nucleus starts in ground state. There is a unique
mean-field hamiltonian h′[ρ, t] giving exact expectation values at
each time for one-body operators, that can be written

h′[ρ](t) = hKS[ρ0] + GKS[ρ](t) ,

Important:
GKS[ρ](t) 6= G (t) .

Now consider linear response: small G (t) −→ λG (t) (λ small):

δρ(ω) = λR(ω)G (ω)

and also
δρ(ω) = λRKS(ω)GKS(ω) .



Now let
λGKS(ω) ≡ λG (ω) + f (ω)δρ(ω) ,

for some nice f .

Then we have

δρ(ω) = RKS(ω) [λG (ω) + f (ω)δρ(ω)]

or, using δρ = λRG ,

λR(ω)G (ω) = RKS(ω) [λG (ω) + λf (ω)R(ω)G (ω)] .

So, since G is arbitrary, we have

R(ω) = RKS(ω) + RKS(ω)f (ω)R(ω) .



Adiabatic approximation

h′[ρ](t) ≈ hKS[ρ(t)] + λG (t)

if time evolution from ground state is very slow.

Recall exact definition

h′[ρ](t) = hKS[ρ0] + λGKS[ρ](t) ,

so in adiabatic approximation

λ
(
GKS

ab (t)− Gab(t)
)
≈ hKS

ab [ρ(t)]−hKS
ab [ρ0] ≈

∑
cd

∂hKS
ab [ρ]

∂ρcd

∣∣∣
ρ0

δρcd(t) ,

i .e. f (ω) ≈ ∂hKS

∂ρ
(ω)

and the equation for the response function becomes

R = RKS + RKS ∂hKS

∂ρ
R

i.e., the equation for the RPA response.



Beyond Adiabatic Approximation

Skyrme RPA is an attempt to approximate the adiabatic limit of the
exact response function.

Going beyond the adiabatic limit would require a
freqency-dependent f . You might think that this would be
necessary for states with energies comparable to single-particle
spacings.

Example of a theory with frequency-dependent f :

Second RPA

But I don’t think its response goes over to RPA response in ω = 0
limit.



Zero-Frequency Response

Inverse-energy-weighted sum:∑
ν

1

(Eν − E0)
| 〈ν| Ĝ |0〉 |2 = −1

2

d

dλ
〈0λ| Ĝ |0λ〉

∣∣
λ=0

,

where |0λ〉 is the ground state of Ĥ + λĜ .

This holds in RPA if |0λ〉 is the mean-field ground state. So if KS
functional is exact, RPA gives exact sum rule, even though
individual energies and transitions are not exact.

Second RPA apparently does not give the same zero-energy
response as RPA. Can/should it be fixed?


