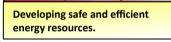
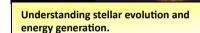
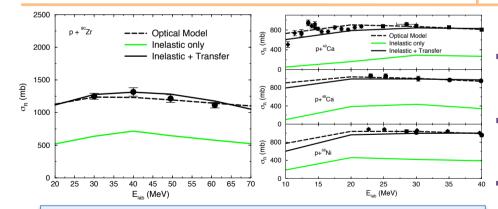

"Towards reliable cross sections for astrophysics, nuclear energy and security" lan Thompson – Lawrence Livermore National Laboratory


Reaction Highlights


Objectives


- Use refined structure models, such as QRPA, and energy density functionals validated by the UNEDF collaboration, to obtain reaction inputs.
- Perform reaction calculations consistent with the structure ingredients, obtaining predictions for elastic, inelastic, and reaction cross sections.
- Compare reaction predictions with experimental data to extract information about the structure model and the energy density functional.
- Overcome all computational challenges arising in the QRPA, folding and coupled-channels steps.

Impact

First microscopic predictions (solid black lines) for reaction cross sections agree well with measurements, giving confidence in the approach.

Progress and Accomplishments

- Applied extensions of energy density functional theory developed under UNEDF to calculate reaction cross sections and angular distributions.
- First successful description of experimental absorption data for a wide range of nucleonnucleus reactions.
 - "Coupled-channel calculation of nonelastic cross sections using a density-functional structure model" by G. P. A. Nobre, F. S. Dietrich, J. E. Escher, I. J. Thompson, M. Dupuis, J. Terasaki and J. Engel, *Physical Review Letters*, 105, 202502 (2010).

