Proton halo in fluorine-17 as a fragile 17-body quantum state

The main contacts for this slide:

Gaute Hagen, ORNL (hageng@ornl.gov) (865) 576-4295 Thomas Papenbrock, University of Tennessee (tpapenbr@utk.edu) (865) 974-3128

Figures: (Top) Artist's rendition of the proton halo nucleus 17 F. The halo consists of one proton orbiting the 16 O nucleus. (Bottom) Energies of low-lying $J^p = 1/2^+$, $3/2^+$ $5/2^+$ states (full lines) compared to data (dashed lines), as a function of the oscillator frequency of the model space. The $1/2^+$ proton halo state agrees very well with experiment.

Reference: G. Hagen, T. Papenbrock, and M. Hjorth-Jensen, arXiv:1003.1995 (2010); accepted for publication in Physical Review Letters.

High-performance computing resources: The coupled-cluster calculations were performed on Jaguar at ORNL.

The Team: This collaboration involves Oak Ridge National Laboratory (G. Hagen), the University of Tennessee (Thomas Papenbrock), and the University of Oslo (Morten Hjorth-Jensen).