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Equations of motion method

Ĥ |Ψ〉 = Eν |Ψν〉

Let

Q†ν = |ν〉 〈0| , ν 6= 0

(so that, e.g., Qν |0〉 = 0). Then. . .

[Ĥ,Q†ν ] |0〉 = (Eν − E0)Q†ν |0〉 ≡ ΩνQ†ν |0〉

and commuting both sides with any other operator Ĝ and
“dotting” with 〈0|

〈0| [G , [Ĥ,Q†ν ] |0〉 = Ων 〈0| [Ĝ ,Q†ν ] |0〉



Now let G = a†mai or Ĝ = a†i am, where we have assumed that in
the crudest approximation the ground state is a Slater determinant
|SD〉 (not the true ground state |0〉) and εm > εF , εi < εF . Then

〈0| [a†mai , [Ĥ,Q
†
ν ] |0〉 = Ων 〈0| [a†mai ,Q

†
ν ] |0〉

〈0| [a†i am, [Ĥ,Q
†
ν ] |0〉 = Ων 〈0| [a†i am,Q

†
ν ] |0〉

Finally, let Q† be a only create particle-hole excitations of the
ground state of a particular form:

Q†ν =
∑
mi

X ν
mia
†
mai −

∑
mi

Y ν
mia
†
i am

Crucial step (and reason for all the commutators). Assume that for
one- and two-body operators Ô that result from commutations:

〈0| |Ô |0〉 ≈ 〈SD| Ô |SD〉

Then some algebra gives(
A B
−B∗ −A∗

)(
X ν

Y ν

)
= Ων

(
X ν

Y ν

)



with

Ami ,nj = (εm − εi ) δmnδij + 〈mj | V̂ |in〉A
Bmi ,nj = 〈mn| V̂ |ij〉A

and
〈ab| V̂ |cd〉A = 〈ab| V̂ |cd〉 − 〈ab| V̂ |dc〉

Finally,

〈ν| a†mai |0〉 = 〈SD| [Qν , a
†
mai ] |SD〉 = X ν∗

mi

〈ν| a†i am |0〉 = 〈SD| [Qν , a
†
i am] |SD〉 = Y ν∗

mi

So even without an explicit expression for |0〉, which must be
different from |SD〉, we can calculate the transition matrix

elements of any operator G ≡
∑

mi (Gmia
†
mai + Gima†i am):

〈ν|G |0〉 =
∑
mi

[X ν∗
mi Gmi + Y ν∗

mi Gim]



Review of Hartree Fock
Modern formulation of ordinary Hartree-Fock theory: Define

ρab = 〈0| a†baa |0〉

so that the expectation value of a one-body operator Ĝ is

〈0| Ĝ |0〉 =
∑
ab

Gabρba = Tr(Gρ) .

For a slater determinant |SD〉, ρ2 = ρ, and in the basis of
single=particle eigenstates

ρab =

{
δa,b a, b < F

0 a > F or b > F .

One defines an energy functional

E [ρ] = 〈SD| Ĥ |SD〉

=
∑
ab

Tabρba +
1

2

∑
abcd

ρca 〈ab| V̂ |cd〉 ρdb

≡ Tr(Tρ) +
1

2
Tr1Tr1(ρV ρ)



Setting δ
[
E − Λ(ρ2 − ρ)

]
= 0 under small variations δρ (where Λ

is a matrix of Lagrange multipliers) leads to the requirement that
the mean field

hab[ρ] =
∂E
∂ρba

= tab +
∑
bd

〈ac | V̂ |bd〉A ρdc

obeys
[h, ρ] = 0 ,

i.e. h and ρ can be made simultaneously diagonal. Diagonalizing
both leads to equations for a single-particle basis:

hab[ρ] = εaδab ,

where, in this basis,

hab = tab +
∑
j<F

〈aj | V̂ |bj〉A .

Also in this basis, the constraint ρ2 = ρ becomes

δρij = δρmn = 0 .



Linear response
One way to get properties of excited states is through the linear
response. Add a weak time-dependent external one-body operator
Ĝ to Ĥ.Then for some function response function R ,

δρab(t) =

∫ ∞
−∞

dt ′ Rab,cd(t − t ′)Gcd(t ′)

where R contains a factor θ(t − t ′). The Fourier transform is

δρab(ω) = Rab,cd(ω)Gcd(ω)

It’s straightforward to show with perturbation theory that

Rab,cd(ω) =
∑
ν

(
〈0| a†baa |ν〉 〈ν| a†cad |0〉

ω − Ων + iε
−
〈0| a†cad |ν〉 〈ν| a†baa |0〉

ω + Ων + iε

)
The poles of R are at the excited-state energies and the residues
are the squares of transition densities.Note also, even for states in
continuum, where sum goes to integral:

Rate 0→ω =
2π

~
∑
ν

| 〈0| Ĝ |ν〉 |2δ(ω − Ων) = Im[Tr(GR(ω)G ∗)]



RPA response
Simplest approximation RHF to R: take |0〉 to be |SD〉, so that
excited states are simple particle-hole excitations.

Better approximation through time-dependent HF:

i ρ̇ = [h[ρ] + G (t), ρ] .

Assuming G small and harmonic, so that
ρ(t) = ρ0 + δρe−iωt + δρ∗e iωt :
Then

ωδρ = [h0, δρ] +
∑
mi

[
∂h

∂ρmi
δρmi +

∂h

∂ρim
δρim, ρ

0

]
+ [G , ρ0] ,

which with the explicit expressions for ρ0
ab =

∑
i<F 〈a|i〉 〈i |a〉,

h0
ab = . . ., and ∂hab

∂ρcd
= 〈ad |V |bc〉A becomes{(

ω 0
0 −ω

)
−
(

A B
B∗ A∗

)}(
δρ
δρ∗

)
=

(
G
G ∗

)
,

with the same A, B matrices as before!



Response function Rab,cd(ω) in this approximation is just the
inverse of the {· · · }. It has poles at ω = ±Ων

RPA (because RPA
eigenvalues come in ± pairs). Residues are RPA eigenvectors.

Similar example:

〈a|
(
ω − Ĥ

)−1
|b〉 =

∑
i

〈a|i〉 〈i |a〉
ω − Ei

So small-amplitude motion around the ground state in TDHF leads
to the RPA response function

RRPA
ab,cd(ω) =

∑
ν

(
〈0| a†baa |ν〉 〈ν| a†cad |0〉RPA

ω − Ων
RPA + iε

−
〈0| a†cad |ν〉 〈ν| a†baa |0〉RPA

ω + Ων
RPA + iε

)

where now the energies and transition matrix elements are given by
the RPA



Equation for RPA response
Note that if Ĥ = Ĥ0 + V̂ , then

1

ω − Ĥ
=

1

ω − Ĥ0

[ω − Ĥ0]
1

ω − Ĥ
=

1

ω − Ĥ0

[ω − Ĥ + V̂ ]
1

ω − Ĥ

=
1

ω − Ĥ0

[1 + V̂
1

ω − Ĥ
]

=
1

ω − Ĥ0

+
1

ω − Ĥ0

V̂
1

ω − Ĥ
.

Without the interaction V̂ (= ∂h/∂ρ), the RPA A, B matrices
correspond to their HF counterparts — only the average potential
contributes — so there is a similar relation for the RPA response
function:

RRPA
ab,cd(ω) = RHF

ab,cd(ω) +
∑
ef ,pq

RHF
ab,ef (ω)

∂hef

∂ρpq
RRPA

pq,cd(ω) .

or

RRPA(ω) = RHF(ω) + RHF(ω)
∂h

∂ρ
RRPA(ω)

for short.



Brief intro to DFT
Energy-Density-Functional theorems, adapted for nuclei, say,
roughly:

Hohenberg-Kohn-Sham

Add an arbitrary one-body operator Ĝ to the nuclear Hamiltonian.
There is a unique (complicated) mean-field Hamiltonian h[ρ] that
gives the exact ground-state energy and expectation values for
one-body operators. It has the form

h[ρ] = hKS[ρ] + G ,

where KS means Kohn-Sham. hKS
ab can be written as ∂EKS

∂ρba
for

some complicated EKS, just like in mean-field theory.

Nuclear theorists have ways of deriving/fitting/guessing EKS (and
therefore hKS). When they do Skyrme mean-field theory, some of
them are really trying to do Kohn-Sham theory. They want

hSk ≈ hKS .



Skyrme DFT

ESk =

∫
dr[

~2

2n
τ +

3

8
t0ρ

2 +
1

16
ρ3 +

1

16
(3t1 + 5t2)ρτ

+
1

64
(9t1 − 5t2)(∇ρ)2 +

3

4
W0ρ∇ · J +

1

32
(t1 − t2)J2]

ρ(r) =
∑

s

ρrs,r′s =
∑

i≤F ,s

|φi (r, s)|2

τ(r) =
∑

i≤F ,s

|∇φi (r, s)|2, J(r) = −i
∑

i≤F ,s,s′

φi (r, s)[∇φi (r, s
′)×σss′ ]



Time-dependent version is a bit different:

Runge-Gross-Kohn-Sham-etc.

Add time-dependent operator Ĝ (t) to the nuclear Hamiltonian,
and assume nucleus starts in ground state. There is a unique
(complex) mean-field hamiltonian h′[ρ, t] giving exact expectation
values at each time for one-body operators, that can be written

h′[ρ](t) = hKS[ρ0] + G KS[ρ](t) ,

Important:
G KS[ρ](t) 6= G (t) .

Now consider linear response for small G (t): In matrix form:

δρ(ω) = R(ω)G (ω)

and also
δρ(ω) = RKS(ω)G KS(ω) .



Now let
G KS(ω) ≡ G (ω) + δG (ω) ,

where
δG (ω) = f (ω)δρ(ω) .

for some nice f .
Then we have

δρ(ω) = RKS(ω) [G (ω) + f (ω)δρ(ω)]

or, using δρ = RG ,

R(ω)G (ω) = RKS(ω) [G (ω) + f (ω)R(ω)G (ω)] .

So, since G is arbitrary, we have

R(ω) = RKS(ω) + RKS(ω)f (ω)R(ω) .

The problem is that we only have crude approximations for f , the
simplest of which is the. . .



Adiabatic approximaton

h′[ρ](t) ≈ hKS[ρ(t)] + G (t)

if time evolution from ground state is very slow.

Recall exact definition

h′[ρ](t) = hKS[ρ0] + G KS[ρ](t) ,

so in adiabatic approximation

G KS
ab (t)− Gab(t) ≈ hKS

ab [ρ(t)]− hKS
ab [ρ0] ≈

∑
cd

∂hKS
ab [ρ]

∂ρcd

∣∣∣
ρ0

δρcd(t) .

So

f (ω) ≈ ∂hKS

∂ρ
(ω)

and the equation for the response function becomes

R = RKS + RKS ∂hKS

∂ρ
R



Significance of Adiabatic Approximation

Now RKS is a mean-field response function like RHF. So the
adiabatic approximation gives an RPA response function with
∂hKS

ab /∂ρcd , which is not antisymmetric in general, in place of the

matrix element 〈ad | V̂ |bc〉A.

Skyrme RPA can be considered an attempt to approximate the adi-
abatic limit of the exact response function.

Going beyond the adiabatic limit would require a
freqency-dependent f . You might think that this would be
necessary for states with energies comparable to single-particle
spacings.

Example of a theory with frequency-dependent f : Second RPA
But I don’t think its response goes over to RPA response in ω = 0
limit.



Sum rules

Two important sum rules:

I Energy-weigthed sum:∑
ν

(Eν − E0)| 〈ν| Ĝ |0〉 |2 =
1

2
〈0|
[
[Ĝ , Ĥ], Ĝ |0〉

]
Can verify by inserting complete set of states

I Inverse-energy-weighted sum:∑
ν

1

(Eν − E0)
| 〈ν| Ĝ |0〉 |2 = −1

2

d

dλ
〈0λ| Ĝ |0λ〉

∣∣
λ=0

,

where |0λ〉 is the ground state of Ĥ + λĜ .
This one follows from first-order perturbation theory.



Fact: Both these hold in RPA if ground-states on right are HF
vacua.

EW sum rule follows in equations of motion approach because
double commutators were evaluated in mean-field ground states

IEW sum rule: TDHF derivation of RPA response function implies
that for the HF state |0HF

λ 〉

δρ = λRRPA(ω = 0)G

and
〈0HF
λ | Ĝ |0HF

λ 〉 = Tr(Gρ0) + Tr(Gδρ) +O(λ2)

so

−1

2

d

dλ
〈0HF
λ | Ĝ |0HF

λ 〉
∣∣
λ=0

= −1

2

∑
abcd

GbaRRPA
ab,cd(0)Gcd

=
∑
abcd

Gba

∑
ν

〈0| a†baa |ν〉 〈ν| a†cad |0〉RPA

Ων
RPA

Gcd =
∑
ν

〈0| Ĝ |ν〉 〈ν| Ĝ |0〉RPA

Ων
RPA



IEW sum in DFT

Note that if we use a Kohn-Sham DFT in place of HF, then the
identity becomes

−1

2

d

dλ
〈0KS
λ | Ĝ |0KS

λ 〉
∣∣
λ=0

=
∑
ν

〈0| Ĝ |ν〉 〈ν| Ĝ |0〉“RPA”

Ων
“RPA”

where “RPA” means the adiabatic approximation discussed earlier.

If the KS functional on the LHS is exact, then so is the RHS. Even
though the energies and matrix elements are only adiabatic approx-
imations, the sum above is exact because it contains the response
function at ω = 0, i.e. at the adiabatic limit.



Symmetries

Mean-field theory spontaneously breaks symmetries, producing set
of ground states related to each other by the symmetry. Mean-field
ground states are localized in space, for example. Bad because

I true ground state is not localized,

I When one state is picked as ground state, others can mix with
excited states unless you’re really careful.

Fortunately, RPA handles this second problem automatically.

Consider an operation Û = e−iλŜ , with [Ĥ, Ŝ ] = 0. If the ground
state is not an eigenstate of Ŝ , then the operation produces
another ground state. In mean-field (or KS) theory, the new
density ρ′ must obey the same equation as the original one:[

[h[ρ′], ρ′
]

= 0 .



For small λ, it turns out

ρ′ab = 〈0′| a†baa |0′〉 = 〈0|U†a†bUU†aaU |0〉 =
∑
cd

U∗acρcdUdb

−→ ρab + λ[S , ρ]ab + . . .

Now repeat the small-oscillations derivation of the RPA, except
with no applied field, ω = 0 and δρmi = λ[S , ρ]mi = Smi ,
δρim = λ[S , ρ]im = −Sim. The result, instead of{(

ω 0
0 −ω

)
−
(

A B
B∗ A∗

)}(
δρ
δρ∗

)
=

(
G
G ∗

)
,

is (
A B
−B∗ −A∗

)(
S
−S∗

)
= 0

So there is an RPA eigenstate with:

Ωsp = 0 , X sp
mi = Smi , Y sp

mi = −Sim ,

where “sp” means “spurious”



Numerical implementations of RPA
Two basic routes:

I Diagonalize

(
A B
−B∗ −A∗

)
in some convenient basis.

Requires discretizing the continuum, usually by putting the
system in a harmonic oscillator or “spherical box”.

I Solve response equation in coordinate space, which is
frelatively with zero-range effective interactions: you only
need R(~r1,~r

′
1;~r2,~r

′
2) at ~r1 = ~r ′1, ~r2 = ~r ′2.

Then solve

RRPA(~r1,~r2;ω) = RHF(~r1,~r2;ω)+

∫
d~r ′RHF(~r1,~r

′;ω)Ṽ (~r ′)RRPA(~r ′,~r2;ω)

where Ṽ is just a constant if you have a pure delta function
interaction, by discretizing integral over space and treating as
matrix equation.
Helped by: nice expression for RHF. This method treats
outgoing boundary conditions of continuum particles correctly
(gets nonzero “escape width”).



HF response

RHF(~r1,~r2;ω) =
∑
mi

(
φm(~r1)φ∗i (~r1)φ∗m(~r2)φi (~r2)

ω − εm + εi + iη

+
φ∗i (~r2)φm(~r2)φ∗m(~r1)φi (~r1)

−ω − εm + εi + iη

)
=
∑

i

(
φ∗(~r1) 〈~r1|

1

ω + εi − h + iη
|~r2〉φi (~r2)

+ φ∗(~r2) 〈~r2|
1

−ω + εi − h + iη
|~r1〉φi (~r1)

)

This is the the Greens function for a particle scattering from the
potential in h.



Pairing and quasiparticles

Note that |SD〉 is a vacuum for the complete set of operators

αa =

{
a†a a < F

aa a > F
.

Making mean-field theory more general can incorporate important
pairing correlations, in which a nucleon in orbit a correlate strongly
with a nucleon in the time-reversed orbit ā The (number
nonconserving) state

|BCS〉 ≡ N e
va
ua

a†aa
†
ā |vac〉

can be represented as a vacuum of quasiparticles

αa ≡ uaaa − vaa†ā , [αa, α
†
b] = δab if |ua|2 + |va|2 = 1 .



Generalization of HF and BCS: HFB

HFB is the most general “mean-field” theory in these kinds of
operators:

αa =
∑

c

(
U∗acac + V∗aca†c

)
, α†a =

∑
c

(Uacac + Vacac) ,

with appropriate constraints on matrices U and V.

Representation like that we used for HF earlier:

R =

(
ρ κ
−κ∗ 1− ρ∗

)
, κab ≡ 〈0| abaa |0〉 ≡ “pairing tensor”

HFB energy functional:

E [ρ, κ] = Tr(tρ) +
1

2
Tr1Tr1ρV ρ+

1

4
Tr2Tr2κ

∗Vκ

or a more general KS-like functional if you want to try to do better.



Varying E − λN − Tr
(
Λ[R2 −R]

)
with respect to R gives HFB

eqation:
[H[R],R] = 0 ,

where

H =

(
h − λ ∆
−∆∗ −h∗ + λ

)
,

with

∆ab ≡
1

2

∑
cd

〈ab| V̂ |cd〉A κcd ,

or something more general if you’re doing (generalized) KS theory.
The simultaneous diagonalization of H and R leads to the explicit
equation (

h − λ ∆
−∆∗ −h∗ + λ

)(
Ua

Va

)
= Ea

(
Ua

Va

)
,

where Ua, Va are the ath columns of the transformation matrices U
and V.



Bases

The basis that diagonalizes H is called the “quasiparticle basis”
There is another “canonical” basis that diagonalizes ρ, U , and V
so that, e.g.

Vab = vaδab .

In this basis HFB looks almost like BCS, except for the fact that H
is not diagonal:

Hab ≡ Eab 6= Eaδab

Name for later use



QRPA through equations-of-motions method

Same idea as with ph RPA, except now

〈0|α†aα
†
b, [Ĥ,Q

†
ν ] |0〉 = Ων 〈0| [α†aα

†
b,Q

†
ν ] |0〉

〈0| [αaαb, [Ĥ,Q
†
ν ] |0〉 = Ων 〈0| [αaαb,Q

†
ν ] |0〉

and
Q†ν =

∑
a>b

X ν
abα
†
aα
†
b −

∑
a>b

Y ν
abαaαb ,

Now assume that can substitute |HFB〉 for |0〉 after doing
commutators. Again get(

A B
−B∗ −A∗

)(
X ν

Y ν

)
= Ων

(
X ν

Y ν

)
but now with more complicated expressions for A and B (what,
don’t believe me?), which can be derived from TDHFB



A matrix. . .
In the canonical basis:

Aab,cd = Eacδbd − Ebcδad − Eadδbc + Ebdδac

−V ph

ac̄b̄d
udvcuavb + V ph

bc̄ādudvcubva

+V ph

ad̄b̄c
ucvduavb − V ph

bd̄āc
ucvdubva

−V pp

c̄ d̄ b̄ā
vcvdvbva − V pp

abdcuaubucud

−V 3p1h

c̄ d̄ab̄
vcvduavb + V 3p1h

c̄ d̄bā
vcvdubva

−V 3p1h
abc̄d uaubudvc + V 3p1h

abd̄c
uaubucvd

−V 1p3h

c̄db̄ā
udvcvbva + V 1p3h

d̄cb̄ā
ucvdvbva

−V 1p3h

ab̄dc
uavbucud + V 1p3h

bādc ubvaucud ,

V ph
acbd =

δ2E [ρ, κ, κ∗]

δρbaδρdc
,

V pp
badc =

δ2E [ρ, κ, κ∗]

δκ∗baδκdc
, V 3p1h

badc =
δ2E [ρ, κ, κ∗]

δκ∗baδρcd
= V 1p3h ∗

cdba ,



and B. . .

Bab,cd = V ph
bdāc̄udvcubva − V ph

adb̄c̄
udvcuavb

−V ph

bcād̄
ucvdubva + V ph

acb̄d̄
ucvduavb

+V pp

bac̄d̄
vcvduaub + V pp

dcāb̄
vavbucud

+V 3p1h
badc̄ udvcuaub − V 3p1h

bacd̄
ucvduaub

+V 3p1h
dcbā ubvaucud − V 3p1h

dcab̄
uavbucud

+V 1p3h

bāc̄d̄
vcvdubva − V 1p3h

ab̄c̄d̄
vcvduavb

+V 1p3h

dc̄āb̄
vavbudvc − V 1p3h

cd̄āb̄
vavbucvd ,



Implementation

I Matrices are much larger than in regular RPA since indices run
over all quasiparticle states. Set of states must be truncated
at some point, using energy or occupation as a criterion (Note
that zero-range pairing must be renormalized at HFB level,
usually by putting upper limit on the continuum)

I Discretization of continuum introduces uncertainty in energy.
It takes about t = 2Rbox/c for an emitted particle to bounce
of wall of box and come back (rather than escaping). This
introduces uncertainty in energy of about

∆E ≈ ~
t
≈ 100 fm

Rbox
= 5 MeV for Rbox = 20 fm

Need “smoothing function” to account for this.

I We have a completely self-consistent code for box boundary
conditions in spherical nuclei — extending it now to deformed
nuclei



Response function and equation for it generalize. In external field
Ĝ =

∑
ab Gaba†aab + G̃ a†aa†b + c.c(

δρ(ω)
δκ(ω)

)
= R(ω)

(
G

G̃

)

RQRPA(ω) = RHFB(ω) + RHFB(ω)
∂H
∂R

RQRPA(ω)

Getting RHFB as a starting point is harder than getting RHF

because spectral representation isn’t much use.

Completely self-consistent setup of Green’s function Skyrme
HFB+QRPA isn’t quite there yet even in spherical nuclei



2+-energy systematics
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2+ energies for Sn isotopes
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Effects of dynamical pairing on 2+ state
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RPA vs. QRPA

15 June, 2006 Istanbul, part 2 25

2+ states in 120Sn, with smearing

Nguyen Van Giai



Monopole strength with some Skyrme terms omitted
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Evolution of isovector dipole strength
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Isoscalar dipole strength near the drip line
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Di-neutron correlation in 
soft dipole mode

1. Particle-particle amplitude (Pair-add) is 
dominating in r>3fm (surface & outside)

2.   2n amplitude is strongly enhanced by pairing 
interaction: nn-correlation in excited states

Di-neutron correlation

)()()( rmadd rPrrP i >>>δρ)(riδρ

•Full pairing

•Cut pair int. 
in RPA 

•Pair int. ~0

16
14

8

1p 1/2
1p 3/2

1d 5/2
2s 1/2
1d 3/2

sizable (2s1/2)(2p*) 
caused by pairing

2p*

18O(gs) + 2n  character

From talk by M. Matsuo



Now
Q†ν =

∑
pn

X ν
pnα
†
pα
†
n − Ypnαpαn

Canonical basis again:

Apn,p′n′ = Ep,p′ δn,n′ + En,n′ δp,p′

+V ph
pn,p′n′(upvnup′vn′ + vpunvp′un′)

+V pp
pn,p′n′(upunup′un′ + vpvnvp′vn′)

and

Bpn,p′n′ = V ph
pn,p′n′(vpunup′vn′ + upvnvp′un′

−V pp
pn,p′n′(upunvp′vn′ + vpvnup′un′)

if energy functional contains no ρκ parts.



R-process beta decay
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We want to evaluate matrix elements of ~στ+ for nuclei along the
r-process path.



Effects of T = 0 pairing

Nuclei near N = 50
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Half-life comparison
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Half lives for r-process nuclei
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Effect on abundances?



What We Know About Neutrinos

Come in three “flavors”, none of which have definite mass.

(
νe

e

) (
νµ
µ

) (
ντ
τ

)

 νe

νµ
ντ

 =

 Uν

  ν1

ν2

ν3

 ⇐= mass eigenstates
mi . 1 eV

U contains three mixing angles (and a few phases).

From recent “oscillation” experiments:
I Solar-ν’s: ∆m2

sol ≈ 7× 10−5 eV2 θsol ≈ 33◦

I Atmospheric-ν’s: ∆m2
atm ≈ 2× 10−3 eV2 θatm ≈ 45◦

I Reactor ν’s: Third mixing angle is small.
Atmospheric νe ’s don’t oscillate.



What We Still Don’t Know

I “Hierarchy”:
normal or inverted?

I Overall mass scale

I Are neutrinos their
own antiparticles?

Oscillation experiments cannot answer these questions.

Neutrinoless double-beta decay can help



Neutrinoless Double-Beta Decay

If energetics are right (ordinary beta
decay forbidden). . .

and neutrinos are their own
antiparticles. . .

then two neutrons inside a nucleus
can turn into two protons, emitting
two electrons and nothing else
(unlike the already observed
two-neutrino process).

.

...

Z, N

Z+1, N-1

Z+2, N-2

!"

n

n p

p

e

eW

W

x



How It Helps

!"

n

n p

p

e

eW

W

x

Rate proportional to square of “effective
neutrino mass”

meff ≡
∑

i

miU
2
ei

If lightest neutrino is light:

I meff ≈
√

∆m2
sol sin2 θsol (normal)

I meff ≈
√

∆m2
atm cos 2θsol (inverted)

!! new expts.



Calculating the Rate

[T 0ν
1/2]−1 =

∑
spins

∫
|Z0ν |2δ(Ee1 + Ee2 − Qββ)

d3p1

2π3

d3p2

2π3

Z0ν , the decay amplitude, contains lepton part∑
k e(x)γµ(1− γ5)Uekφk(x) e(y)γν(1− γ5)Uekφk(y)

= −
∑

k e(x)γµ(1− γ5)Uekφk(x) φc
k(y)γν(1 + γ5)Uekec(y) ,

where φ’s are Majorana mass eigenstates. After contraction, get 5

− i

4

∫ ∑
k

d4q

(2π)4
e−iq·(x−y)e(x)γµ(1−γ5)

qργρ + mk

q2 −m2
k

γν(1+γ5)ec(y) U2
ek ,

The qργρ part vanishes, leaving a factor proportional to

meff ≡
∑

k mkU2
ek .



Hadronic part
Contains product of weak hadronic currents JL:

〈f |JµL (x)JνL (y)|i〉 =
∑
n

〈f |JµL (~x)|n〉〈n|JνL (~y)|i〉e−i(Ef−En)x0e−i(En−Ei )y0 ,

which, after integration over times, gives a factor

2πδ(Ef + Ee1 + Ee2 − E )
∑
n

[
〈f |JµL (~x)|n〉〈n|JνL (~y)|i〉
q0(En + q0 + Ee2 − Ei )

+

〈f |JνL (~x)|n〉〈n|JµL (~y)|i〉
q0(En + q0 + Ee1 − Ei )

]
,

with the hadronic current given by

〈p|JµL (x)|p′〉 = e iqxu(p)

(
gV (q2)γµ − gA(q2)γ5γ

µ

− igM(q2)
σµν

2mp
qν + gP(q2)γ5qµ

)
τ+u(p′)

−→ gAδµ 6=0σµτ+ + gV δµ0τ+ + . . .



Simplified Form
Neglecting the induced-pseudoscalar term and momentum
dependence in the weak current, and summing over intermediate
states in closure (a good approximation) gives

M0ν ≈ MGT
0ν −

g 2
V

g 2
A

MF
0ν

with

MF
0ν =〈f |

∑
a,b

H(rab,E )τ+
a τ

+
b |i〉

MGT
0ν =〈f |

∑
a,b

H(rab,E )~σa · ~σbτ
+
a τ

+
b |i〉

H(r ,E ) ≈ 2R

πr

∫ ∞
0

dq
sin qr

q + E − (Ei + Ef )/2



Phenomenolgical QRPA

1. Start with pheonomoneological Wood-Saxon potential and
G-matrix 2-body interaction.

2. BCS for both nuclei in space containing all single-particle
states within 10 or 20 MeV of the Fermi surface.

3. Matrix charge-changing QRPA (in same space) from both
nuclei — creates two sets of intermediate states |ni 〉 and |nf 〉.

4. Write, e.g.,∑
n

〈f |JµL (~x)|n〉〈n|JνL (~y)|i〉
q0(En + q0 + Ee2 − Ei )

=
∑
ni ,nf

〈f |JµL (~x)|nf 〉〈nf |ni 〉 〈ni | JνL (~y)|i〉
q0( 1

2 [Eni + Enf
] + q0 + Ee2 − Ei )

5. Use recipe for overlap of intermediate states:

〈nf |ni 〉 =
∑
ab

(
X nf ∗

ab X ni
ab − Y nf ∗

ab Y ni
ab

)
Just like in single-beta decay, result sensitive to T = 0 pairing
(especially for 2ν decay).



Intermediate-state contributions
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Fiddling with the QRPA

for 76Ge and a five orbits (d5/2, d3/2, s1/2, g7/2, h11/2) for
130Te and 136Xe. These s.p. sets are free of the spurious
center-of-mass states, but obviously miss a large part of
the GT strength as well as of the strength corresponding
to the higher multipoles. In order to describe GT transi-
tions between low-lying states in the NSM, it is necessary
to quench the corresponding strength. This is most con-
veniently formally achieved by using gA = 1.0 instead of
the free nucleon value of gA = 1.25. We follow this pre-
scription in our attempt to use this smallest s.p. space,
and only there.

It appears that it is impossible to describe the 2νββ

decay in such s.p. space using QRPA or RQRPA, and the
nucleon-nucleon potentials employed in this work. One
would have to renormalize the particle-particle block too
much, with gpp ∼ 2.0, unlike the rather modest renor-
malization shown in Table I. With such large value of
gpp the interaction is too far removed from the G-matrix
used in the rest of this work. Therefore, one cannot ex-
pect to obtain sensible 0ν matrix elements. In fact, we
obtained very small matrix elements in this case for 130Te
and 136Xe, while, perhaps accidentally, for 76Ge they are
in a crude agreement with the NSM result [24].
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-3.90
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FIG. 1. Dependence of the matrix elements M2νββ (left
scale, dashed lines) and M0νββ (right scale, full lines) on the
parameter gpp. Calculations were performed for 9 and 21
s.p. levels for 76Ge as indicated; the Nijmegen potential and
RQRPA method were used. The thin dotted horizontal line
indicates that by fixing gpp to reproduce the experimental
value M2νββ = 0.15 MeV−1 the value of M0νββ is also stabi-
lized.

We list the results with the three larger single-particle
bases in Table II which represents the most significant
part of the present work. As one can see by inspecting
the entries, one can draw two important conclusions:

• The resulting M0ν do not depend noticeably on the
form of the nucleon-nucleon potential used. That
is not an unexpected result.

• Even more importantly, with our choice of gpp the
results are also essentially independent on the size
of the s.p. basis. This is a much less obvious and
rather pleasing conclusion. It can be contrasted
with the result one would get for a constant gpp

independent on the size of the s.p. basis. The val-
ues of M0ν differ then between the small and large
bases by a factor of two or more.

The effect of the gpp adjustment is illustrated in Fig.
1, showing that our procedure leads to almost constant
M0ν matrix elements. On the other hand, by choosing a
fixed value of gpp the resulting M0ν matrix elements for
9 and 21 s.p. levels would differ substantially.

The entries in Table II are relatively close to each
other. To emphasize this feature, each calculated value is
treated as an independent determination and for each nu-
cleus the corresponding average 〈M0ν〉 matrix elements
(averaged over the three potentials and the three choices
of the s.p. space) is evaluated, as well as its variance σ

σ2 =
1

N − 1

N
∑

i=1

(M0ν
i − 〈M0ν〉)2, (N = 9). (5)

These quantities (with the value of σ in paretheses) are
shown in Table III. Not only is the variance substantially
less than the average value, but the results of QRPA, al-
beit slightly larger, are quite close to the RQRPA values.
The averaged nuclear matrix elements for both methods
and their variance are shown in Fig. 2.

Combining the average 〈M0ν〉 with the phase-space
factors listed in Table II the expected half-lives (for
RQRPA and 〈mν〉 = 50 meV, the scale of neutrino masses
suggested by oscillation experiments) are also shown in
Table III. These predicted half-lives are a bit longer (par-
ticularly for the last three nuclei on our list) then vari-
ous QRPA calculations usually predict. They are faster,
however, then the shell model results of Ref. [24].

TABLE III. Averaged 0νββ nuclear matrix elements
〈M0ν〉 and their variance σ (in parentheses) evaluated in the
RQRPA and QRPA. In column 4 the 0νββ half-lives evalu-
ated with the RQRPA average nuclear matrix element and
for the 〈mν〉 = 50 meV are shown.

Nucleus RQRPA QRPA T1/2 (in 1027 y for 〈mν〉 = 50 meV

76Ge 2.40(0.07) 2.68(0.06) 2.3
100Mo 1.16(0.11) 1.28(0.09) 1.4
130Te 1.29(0.11) 1.35(0.13) 1.1
136Xe 0.98(0.09) 1.03(0.08) 1.9

4



Existing Calculations

Lots done since 1987, most in QRPA, some in shell model.

QRPA vs. Shell Model:

protons neutrons

QRPA

Shell
Model

protons neutrons

QRPA

Shell
Model

protons neutrons

QRPA

Shell
Model

protons neutrons

QRPA

Shell
Model

pn

protons neutrons

QRPA

Shell
Model

Large single-particle space;
simple correlations within it.
Small single-particle space;
arbitrarily complex correla-
tions within it.



Shell-Model vs. QRPA Results

Results can differ by
factor of 2 or more
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