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Equations of motion method

":I |\U> =E, |\Ul/>
Let

Ql=Ivl, v#0
(so that, e.g., Q,|0) = 0). Then...

[A, Qf]10) = (E, — E0)@} |0) = Q) |0)

and commuting both sides with any other operator G and
“dotting” with (0|

(0 [G.[H, Q[110) = Q” (0] [G, @] |0)



Now let G = a:rna,- or G = a:-ram, where we have assumed that in

the crudest approximation the ground state is a Slater determinant
|SD) (not the true ground state |0)) and €, > €f, €; < €. Then

(0] [alh,ai, [A,QI]10) = Q¥ (0][af,a, Qf]|0)
(0| [alam, [, Qf]10) = ¥ (0|[afam, Qf]|0)

Finally, let QT be a only create particle-hole excitations of the
ground state of a particular form:

QL= Xpahai— > Yialam
mi mi

Crucial step (and reason for all the commutators). Assume that for
one- and two-body operators O that result from commutations:

(01100) = (SD| O |SD)

Then some algebra gives

(B ) (%)== ()



with

Amini = (€m — €i)0mndjj + (mj| 1% |in)
Bmi,nj = <mn’ \A/ ‘U)A
and . A .
(ab| V |cd) 4, = (ab| V' |cd) — (ab| V |dc)
Finally,

(v|ahai[0) = (SD|[Q..ahai]|SD) = Xi:
(v|alam|0) = (SD|[Q,alam]|SD) = Yy

So even without an explicit expression for |0), which must be
different from |SD), we can calculate the transition matrix
elements of any operator G = Zmi(Gm,-a;rna,- + G,-ma:-ram):

(V| G|0) = Z (X% Gmi + Y2 Gim]



Review of Hartree Fock
Modern formulation of ordinary Hartree-Fock theory: Define
pab = (0] azaa |0)
so that the expectation value of a one-body operator G is
(0] G oy = Z Gabpba = Tr(Gp).
ab

For a slater determinant |SD), p? = p, and in the basis of
single=particle eigenstates

. 5ab a,b<F
P70 a>Forb>F.
One defines an energy functional
El)] = (SD|H|SD)

1 N
— Z Tabpba + 5 Z Pca (ab\ Y4 |Cd> Pdb
ab abcd

1
Tr(Tp) + 5 T Tri(pVp)



Setting 0 [€ — A(p? — p)] = 0 under small variations §p (where A
is a matrix of Lagrange multipliers) leads to the requirement that
the mean field

= tap + Z <ac| \7 ‘bd>A Pdc

o€
hab[p] = 8913
2 bd

obeys

[h7 :0] =0,
i.e. h and p can be made simultaneously diagonal. Diagonalizing
both leads to equations for a single-particle basis:

hab[p] = 6353b7

where, in this basis,

hab = tan + > (aj| V [bj) 4 -
Jj<F

Also in this basis, the constraint p> = p becomes

dpij = 0pmn = 0.



Linear response
One way to get properties of excited states is through the linear
response. Add a weak time-dependent external one-body operator
G to H.Then for some function response function R,

Span(t) = / dt' Rap,ca(t — t')Gea(t')

where R contains a factor 6(t — t'). The Fourier transform is

5pab(w) = Rab,cd(w)ch(w)
It's straightforward to show with perturbation theory that

t t i
Rapca(@) = > ((0\ ala,|v) (v]atag|0) (0 altag |v) (V] a)a, |0>>

~ w— Q¥+ ie a w+ QY+ ie
The poles of R are at the excited-state energies and the residues
are the squares of transition densities.Note also, even for states in

continuum, where sum goes to integral:

Rate o_.,, = 2% > 101 G |v) Po(w — Q) = Im[Tr(GR(w) G*)]



RPA response

Simplest approximation RMF to R: take |0) to be |SD), so that
excited states are simple particle-hole excitations.

Better approximation through time-dependent HF:
i = [hlp] + G(t), o] -

Assuming G small and harmonic, so that
p( )—po+5pe I(Ut_|_5p* lwt
Then

oh
wdp = [°, 6p] +Z [ o 5,0m, p 5,0im,po} +16G,0%,

which with the explicit expressions for p2, = 3", ¢ (ai) (i|a),
Ohap _
hd, = ..., and Ty = (ad| V' |bc) 4 becomes

s 2)-(e 2 )il )=(e)

with the same A, B matrices as beforel




Response function R,p, cg(w) in this approximation is just the
inverse of the {---}. It has poles at w = £Qfp, (because RPA
eigenvalues come in £ pairs). Residues are RPA eigenvectors.

Similar example:

CICURCEIE= =

1

So small-amplitude motion around the ground state in TDHF leads
to the RPA response function

RIS (o) — Y ( (0122 ) (V1 3t2a 00y _ {01 2224 14) (¥1 3,20 D)
ab,ed - w— Qps + e w+ Qs + e
where now the energies and transition matrix elements are given by
the RPA



Equation for RPA response
Note that if H = Hy + V, then

1 1 N 1 1 A A 1
~ = —[w — Ho] ~ = — [w — ~
w—H w — Hy w—H w—H
1 A1
= —[1+V —]
w — Hy w—H
1 1 -~ 1
= — + 4

w — Hy w—ltlo w—H’

Without the interaction V' (= dh/dp), the RPA A, B matrices
correspond to their HF counterparts — only the average potential
contributes — so there is a similar relation for the RPA response

function:
6h ,c
R‘i)PCAd( ): ab, cd(w) + Z ab ef :q R}iﬁ?d( )
ef,pq
o oh
RRPA(w) — RHF(w) + RHF(W)%RRPA(W)

for short.



Brief intro to DFT
Energy-Density-Functional theorems, adapted for nuclei, say,
roughly:
Hohenberg-Kohn-Sham
Add an arbitrary one-body operator G to the nuclear Hamiltonian.
There is a unique (complicated) mean-field Hamiltonian h[p] that

gives the exact ground-state energy and expectation values for
one-body operators. It has the form

hlp] = K"*3[p] + G,

where KS means Kohn-Sham. thS can be written as %“:p for

some complicated X5 just like in mean-field theory.

Nuclear theorists have ways of deriving/fitting/guessing £€° (and
therefore h%5). When they do Skyrme mean-field theory, some of
them are really trying to do Kohn-Sham theory. They want

hSk ~ hKS



Skyrme DFT

3 1
Sk
dr[— £ = t t:
£ / r[ T—i—8op +16p +16(31+52)pT

3 1 5
64(9t1 — 51.‘2)(Vp) GF = Wopv J+ 32(t1 — tz)J ]

r)—zprsrs— Z ’d)l r, 5

i<F,s

(=Y Ve, ) =i Y 6i(r,s)[Vei(r.s)xos]

i<F,s i<F,s,s’



Time-dependent version is a bit different:
Runge-Gross-Kohn-Sham-etc.

Add time-dependent operator G(t) to the nuclear Hamiltonian,
and assume nucleus starts in ground state. There is a unique
(complex) mean-field hamiltonian h'[p, t] giving exact expectation
values at each time for one-body operators, that can be written

W p)(t) = h"S[po] + G™S[p](2),

Important:

G*p]() # G(t).

Now consider linear response for small G(t): In matrix form:

and also



Now let

G¥w) = G(w) +0G(w) ,

where
0G(w) = f(w)dp(w) .

for some nice f.
Then we have

5p(w) = RES(w) [6(w) + F(w)dp(w)]
or, using 6p = RG,
R(w)G(w) = R*(w) [6(w) + f(w)R(w)G(w)] -
So, since G is arbitrary, we have

R(w) = R¥S(w) + RES(w)f(w)R(w).

The problem is that we only have crude approximations for f, the
simplest of which is the. ..



Adiabatic approximaton

W [p](t) ~ hS[p(t)] + G(2)
if time evolution from ground state is very slow.

Recall exact definition
Hlpl(t) = h*5[po] + GX5[p](t),

so in adiabatic approximation

KS KS RS o]
GEY (1) — Gan(t) = hi5[p(t)] — hs'[po] ~ Z et o dped(t) .
So oS
flw) ~ p (w)

and the equation for the response function becomes

KS
R=RKS 1 prsi g
dp



Significance of Adiabatic Approximation

Now RS is a mean-field response function like RHF . So the

adiabatic approximation gives an RPA response function with
8h§bs/8pcd, which is not antisymmetric in general, in place of the
matrix element (ad| V' |bc) ,.

Skyrme RPA can be considered an attempt to approximate the adi-
abatic limit of the exact response function.

Going beyond the adiabatic limit would require a
fregency-dependent . You might think that this would be
necessary for states with energies comparable to single-particle
spacings.

Example of a theory with frequency-dependent : | Second RPA

But | don't think its response goes over to RPA response in w =0
limit.



Sum rules

Two important sum rules:

» Energy-weigthed sum:

S (6 — Eo)| (] G[0) 2 = 5

v

(| |16. £ G [0)]

N |

Can verify by inserting complete set of states

» Inverse-energy-weighted sum:

1 s s 1d s
ZV:(E,,—E())HV‘G’OH __§ﬁ<0/\‘G’0A>‘A:o=

where [0,) is the ground state of H + AG.
This one follows from first-order perturbation theory.



Fact: Both these hold in RPA if ground-states on right are HF
vacua.

EW sum rule follows in equations of motion approach because
double commutators were evaluated in mean-field ground states

IEW sum rule: TDHF derivation of RPA response function implies
that for the HF state |0}F")

6p = ARFPA(w = 0)G

and
(0] G |05y = Tr(Gpo) + Tr(Gdp) + O(N?)

SO \
1d HF| & |~AHF 1 RPA
5y O IGI0N) [\ o= 5D GraRIL(0)G
abcd

Z G Z (0] abaa lv) (V] acad 10)rpA Gey Z (0| G lv) (v| G 0)RpA

v 14
abcd QRPA v Q RPA



[EW sum in DFT

Note that if we use a Kohn-Sham DFT in place of HF, then the
identity becomes

1 d  Ks| & |aKS 0] G v) (] G|0).gpar
“2ax OVTE0 Lo =2 T

where “RPA” means the adiabatic approximation discussed earlier.

If the KS functional on the LHS is exact, then so is the RHS. Even
though the energies and matrix elements are only adiabatic approx-
imations, the sum above is exact because it contains the response
function at w = 0, i.e. at the adiabatic limit.




Symmetries

Mean-field theory spontaneously breaks symmetries, producing set
of ground states related to each other by the symmetry. Mean-field
ground states are localized in space, for example. Bad because
> true ground state is not localized,
» When one state is picked as ground state, others can mix with
excited states unless you're really careful.

Fortunately, RPA handles this second problem automatically.

Consider an operation U = e_i’\g, with [I:I, 3] = 0. If the ground
state is not an eigenstate of S, then the operation produces
another ground state. In mean-field (or KS) theory, the new
density p’ must obey the same equation as the original one:

[[h[pl]v Pl] =0.



For small ), it turns out

P = (0']a}a, |0") = (0] UTaf UUTa, U |0) = > UsepeaUas
cd
- pab+)\[sap]ab+-"

Now repeat the small-oscillations derivation of the RPA, except
with no applied field, w = 0 and dpmi = A[S, plmi = Smi,
0pim = A[S, plim = —Sim- The result, instead of

s 2)-(e 2 )il )=(e)
(5w )(5)

So there is an RPA eigenstate with:
Qsp = 07 XrSnI; = 5mia Y,Sn},) = _Sim7

where “sp” means “spurious”



Numerical implementations of RPA
Two basic routes:

A B
—B* —A*
Requires discretizing the continuum, usually by putting the
system in a harmonic oscillator or “spherical box".

» Diagonalize > in some convenient basis.

» Solve response equation in coordinate space, which is
frelatively with zero-range effective interactions: you only
need R(ri, 7, h, ) at i =7, h =17,

Then solve

RRPA (7 7y;w) = RUF (7, Fg;w)+/dF’RHF(F1, P w) V(P )REPA(F, 7y )

where V is just a constant if you have a pure delta function
interaction, by discretizing integral over space and treating as
matrix equation.

Helped by: nice expression for RMF. This method treats
outgoing boundary conditions of continuum particles correctly
(gets nonzero “escape width").



HF response

Lo Om(11) 9} () Pm(P2)0i(72)
RHF(,LQ;W):Z( clu—em1+€,-f,'77 )

mi

n ¢7(F2)¢m(F2)¢Tn(ﬁ)¢i(Fl)>
—W—€m+€ +in
* (= - 1 - (=
= <¢ GIXGH ota—_hiin |72) ¢i(r2)
1
—w+e€ —h+in

+ ¢*(R) (R |71) <Z>;(?1)>

This is the the Greens function for a particle scattering from the
potential in h.



Pairing and quasiparticles

Note that |SD) is a vacuum for the complete set of operators

al a<F
oy = .
a, a>F

Making mean-field theory more general can incorporate important
pairing correlations, in which a nucleon in orbit a correlate strongly
with a nucleon in the time-reversed orbit 3 The (number
nonconserving) state

va 5t ot
|BCS) = Nev ™% |vac)
can be represented as a vacuum of quasiparticles

Oy = Uya; — vaa;, [aa,az] =4, if |u,—,,\2 + v, =1.



Generalization of HF and BCS: HFB

HFB is the most general “mean-field” theory in these kinds of
operators:

to=3 (Uicac+Vieal) . ah =" Useac +Vacac)

c c
with appropriate constraints on matrices U/ and V.

Representation like that we used for HF earlier:

p K _ e "
R = < 1 > , Kab = (0] apa,s |0) = “pairing tensor

HFB energy functional:
1 1 .
Elp, k] = Tr(tp) + 3 Trn TnpVp + 7 T Tnk*VE

or a more general KS-like functional if you want to try to do better.



Varying € — AN — Tr (A[R? — R]) with respect to R gives HFB
eqgation:
[H[R].R] =0,

h—\ A
H‘( N —h*+)\>’

1 .
Doy = Zd: (ab| V |cd) 5 Ked ,
Ci

where
with

or something more general if you're doing (generalized) KS theory.
The simultaneous diagonalization of H and R leads to the explicit

equation
h—\ A Us '\ E U,
_A* _h* _|_ )\ Va — F=a Va 9

where U,, V, are the a columns of the transformation matrices U
and V.



Bases

The basis that diagonalizes H is called the “quasiparticle basis”
There is another “canonical” basis that diagonalizes p, U, and V
so that, e.g.

Vab = Valap -

In this basis HFB looks almost like BCS, except for the fact that ‘H
is not diagonal:
Hab = Eab 7& Eaéab

Name for later use



QRPA through equations-of-motions method

Same idea as with ph RPA, except now

(Ol alal, [A,Qf]10) = Q" (0|[alaf. Qf]10)
(0] [aacrn, [H, QF110) = Q¥ (0] [aa0ts, Q]] |0)

and

=D Xawalal = Yiiasas.

a>b a>b

Now assume that can substitute |HFB) for |0) after doing
commutators. Again get

A B XY\ Qv XY
—B* —A* yv | yv
but now with more complicated expressions for A and B (what,
don't believe me?), which can be derived from TDHFB



A matrix. . .
In the canonical basis:

Asbed = EacObd — EpcOad — Esd0bc + Ebdbac

—yPh UgVelUaVp + Vb 2gUdVcUpVa

'bd
ph
+V ShclcVdUaVh — Vb;ﬁcuchUbVa
PP
V-(;E-VchVbVa =V pacUaliplicUq

—V3p 5 VeVdUaVs + V_5b_ VeVgUpVa

3p1 3plh
VadeUanUch+V Jc UallbUc Ve

1
— V_;b_ UgVeVpVa + V— uc V4 VhVs

_V:de UaVpUcly + Vbadc UpValcUy,
62E[p, k, k¥
Vacbd 5 5
Pba9Pdc
Vpp — (52E[p7 K, R*] V3p1h _ 52E[/?7 K, H*] _ V1p3h *
badc 51%23(5%‘16 ’ badc 5’€Zaépcd cdba



and B. ..

Bab,cd = Vbjlg- UdVelpVa — Vpth— UgVelaVp
—V S5UcVdUpVa + V FUcVdUaVp
Vpp_- VeVgUaUp + Vi_g[,Va VpUcUg
Vbadc UgVelaUp — V3p1—hucvduaub
Vdcba UpVallcly — deib UsVpUcUy

+V1_p_— VeVgUpVa — V —p_— VeVgUa Vi

—{—Vlf)_— VaVplUgVe — V vavbucvd,



Implementation

» Matrices are much larger than in regular RPA since indices run
over all quasiparticle states. Set of states must be truncated
at some point, using energy or occupation as a criterion (Note
that zero-range pairing must be renormalized at HFB level,
usually by putting upper limit on the continuum)

» Discretization of continuum introduces uncertainty in energy.
It takes about t = 2R},ox/c for an emitted particle to bounce
of wall of box and come back (rather than escaping). This
introduces uncertainty in energy of about

h 100 fm

AE~ -~
t Rbox

=5 MeV for Ryox = 20 fm

Need “smoothing function” to account for this.

» We have a completely self-consistent code for box boundary
conditions in spherical nuclei — extending it now to deformed
nuclei



Response functlon and equation for it generalize. In external field
=> . Gabaaab + Gaaaz +c.c

(23) (%)

OH
RQRPA(w) — RHFB(w)+RHFB( )aRRQRPA( )

Getting RMFB as a starting point is harder than getting RHY
because spectral representation isn't much use.

Completely self-consistent setup of Green's function Skyrme
HFB+QRPA isn’t quite there yet even in spherical nuclei



2" -energy systematics
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27" energies for Sn isotopes
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Effects of dynamical pairing on 27 state

-

120

a Pairing effect on the low-lying T=0 27" state

== full pairing
== N0 dynamical pairing
== NO pairing

E [MeV]

= Neutrons
= protons




RPA vs. QRPA

2+ states in 120Sn, with smearing
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Monopole strength with some Skyrme terms omitted
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Evolution of isovector dipole strength
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Isoscalar dipole strength near the drip line
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Di-neutron correation in

soft dipole mode

‘ ?gjgg gﬁgz Qi(ﬁgp ") dominating in r>3fm (surface & outside)
M) P¥(r)>dg(r) >>P™(r)
_ a—— 180(gs) + 2n character
\/ 200 2. 2namplitudeis strongly enhanced by pairing
interaction: nn-correlation in excited states

1. Particle-particle amplitude (Pair-add) is

: S

P™(r) | *Full pairing 16
=N 0 - 14
I~ «Cut pair int.
in RPA 8
0 2 4 6 Pair int. ~0
¢ [fm] ar int.

Padd(p) Di-neutron correlation

From talk by M. Matsuo



Now

QT = Z pn p n - YP”aPa”

Canonical basis again:

Apnpw = Epp 5n7n’ + Enw 5/0,/3’
+veh oo (

—f—Vp,7 o (UpUnUp Uy = VpVp Vi Vi)

UpVplp Viy + VplUpVpy Uy )

and

_ ph
Bpnyp/,,/ = mep,n,(vpunup/vn/—|—upv,,vp/u,,/

_ VPP

g (UpUnVp Vi + Vp ViU Uy )

if energy functional contains no pk parts.



R-process beta decay

Limits of nuclear
existence

Towards a unified

070 Shell L
description of the nucleus

Ab initio Model
few-body
calculations ~ No-Core Shell Model
G-matrix

We want to evaluate matrix elements of &7 for nuclei along the
r-process path.



Effects of T = 0 pairing

Nuclei near N = 50
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Half-life comparison
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Half lives for r-process nuclei
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Effect on abundances?

log Y(A)
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What We Know About Neutrinos

Come in three “flavors”, none of which have definite mass.

v v .
€ U L <= mass eigenstates
14 = v 1%}
H m; 5 1 eV
Vr V3

U contains three mixing angles (and a few phases).

From recent “oscillation” experiments:

» Solar-v's: Am?, ~7x107° eV?2 Oso1 =~ 33°
> Atmospheric-v's: Am2,, ~2x 1073 eV? O ~ 45°

» Reactor v's: Third mixing angle is small.
Atmospheric v,.'s don't oscillate.



What We Still Don’t Know

Mass (eV)
4 mu tau
o, CESG—
' 0.058 Solar g "
0.050 C—— > “Hierarchy”:

normal or inverted?
Atmospheric
» Overall mass scale

At heri . .
mospheric » Are neutrinos their

v, Csss—— (0.009 own antiparticles?

Solar
Vi C———mmmm  =( =0 O vy

v Y

Oscillation experiments cannot answer these questions.

Neutrinoless double-beta decay can help




Neutrinoless Double-Beta Decay

If energetics are right (ordinary beta
decay forbidden). ..

and neutrinos are their own Z+2, N-2
antiparticles. . .

then two neutrons inside a nucleus
can turn into two protons, emitting
two electrons and nothing else
(unlike the already observed
two-neutrino process).




How It Helps

Mass (eV)
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Rate proportional to square of “effective

neutrino mass”
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i

If lightest neutrino is light:
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Calculating the Rate

v1— d? b1 d3
[Tlo/z] b= Z/|Zou’ 0(Ee1 + Eeo — Qpg) 55 523 on3

spins

Zoy, the decay amplitude, contains lepton part
>k €()u(1 = 75) Uekdic(x) €(y )10 (1 — 75) UekPi(y)
= =2 80l = 5) Uekdk(x) 5 ()70 (1 + 75) Ueke(y)

| S |

where ¢'s are Majorana mass eigenstates. After contraction, get 5

/Z d4 e T B(x)y,(1- ’YS)q Jo My (145)e(y) UZ |

k

The g7, part vanishes, leaving a factor proportional to

— 2



Hadronic part
Contains product of weak hadronic currents J; :

(FECT W) = STl Jf (7)) e (B EnogilEn—Edn

n
which, after integration over times, gives a factor
UEACIIGEASIDN
q°(En + q° + Ee2 — Ej)

(F1JL () m) {nlJL (P)1i) ]
qo(En + qO + Ee1 — EI) ’

216(Er + Ee1 + Eea — E) Y {

with the hadronic current given by

(PGl = ¥ a(p )(gv( )1 ga(e s
2mp

— gA5H¢00MT+ + gV6u07—+ + ...

— igm(¢?) =—qu + gp(qz)msq“) Tru(p)



Simplified Form
Neglecting the induced-pseudoscalar term and momentum
dependence in the weak current, and summing over intermediate
states in closure (a good approximation) gives

GT g\z/ F
Moy, ~ My, — =5 My,
&a

with

Mg, =(f1Y _ H(rap, E)ri 7 1i)
a,b

MgT =(FI > H(rap, E)Ga - G757 i)
a,b

. /

= 2R [™ i
H(r,E) ~ / dg—— s gr
o qtE—(E+E)/2




Phenomenolgical QRPA

1. Start with pheonomoneological Wood-Saxon potential and
G-matrix 2-body interaction.

2. BCS for both nuclei in space containing all single-particle
states within 10 or 20 MeV of the Fermi surface.

3. Matrix charge-changing QRPA (in same space) from both
nuclei — creates two sets of intermediate states |n;) and |nf).

4. Write, e.g.,

3 (FIL ) (nl L (D) > (FIJL () ne)Cne [mi) (nil L (F)]7)
q°(En+ q° + Ee2 — Ej) q°(31En + En,] + ¢° + Eco — E))

ni,ng

5. Use recipe for overlap of intermediate states:

(nelni)y =Y (XS5 X3 = Yo" Yab)
ab

Just like in single-beta decay, result sensitive to T = 0 pairing
(especially for 2v decay).



Intermediate-state cont

ributions

MIOV(J+)

-0.8

M>=3.88 (9,,=1.050)
M%=2.74 (9,,=1.0%)
M*=220 (g, =1.105) 3

@ m [

12F

-04




Fiddling with the QRPA

0254~

- 3.90

M? (MeV ™)

0.00

MOV

- 0.00

-3.90

-0.25 —

0.7 0.8

0.9

11
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Existing Calculations

Lots done since 1987, most in QRPA, some in shell model.

QRPA vs. Shell Model:
~

Large single-particle space;
simple correlations within it.
Small single-particle space;
arbitrarily complex correla-
tions within it.

7
protons neutrons



Shell-Model vs. QRPA Results

Results can differ by
factor of 2 or more

A NSM (Jastrow)
[ o (R)QRPA (Jastrow, UCOM)
[ A A A ]
E A
Boe Sge %y 100 U6~y 18 1% By o
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