UNEDF SCIDAC ab-initio progress

Universal Nuclear Energy Density Functional

Neutron Matter Light Nuclei Medium Mass Nuclei

Pieper, Wiringa

lowa State:

Vary, Maris

Carlson, Gezerlis, Stetcu, Dupuis

Navratil. Ormand

ORNL/UT:

Dean, Papenbrock, Hagen

Bulgac

Validation/Verifications of Codes Constraining Density Functional Strong Ties to Computational Science

Neutron Matter EOS

Neutron Matter properties less well-known than Nuclear Matter near equilibrium density Ab Initio calculations can provide guidance to the density functional

Equation of State at Low Densities

Superfluid Density Functional /Ab Initio

Calculate one-, two-body density matrix for matter
Do SLDA & other Density functionals work as well for
neutron drops?
Finite range of interaction, weaker pairing,

various trap geometries, ...

Neutron Matter Pairing Gap

Pairing Gap for Atomic Gas Experimentally confirmed to ~10%

Finite Systems: Neutron Drops

Stringent tests of DFT

EOS pairing external fields: quadrupole, spin dependent,...

ADLB Calculations w/ 16,384 processors!

Light Nuclei: Benchmarks and relations to DFT

Simplified interactions comparison GFMC and NCSM Good (0.4 MeV) agreement for energies RMS radii need refinement for weakly bound nuclei

SRG/N3LO better than 1% agreement for ⁴He, ⁸He w/ CC, CI (and FY for ⁴He)

	⁶ Li	⁶ He	⁷ Li	⁸ He	⁹ Be	¹² C
modSSC	✓	√	0	√	0	©
SSC/TNI			0			©
SRG/N3LO				√		©

Started Yr 2

¹²C in an external well

Physics Issues:

open shell, odd N,Z; weakly bound nuclei
reliability of evolution from 'bare' to lower-momentum interactions
response to external potentials, one-body density matrix

Important ties to Computational Science: Pieper/Lusk (ADLB), Ng/Vary (MFD), ...

Ab-initio calculations in medium mass nuclei

Present Status:

CI: ¹⁶O and ⁴⁰Ca with low-momentum potentials in 4p4h

CC: ¹⁶O and ⁴⁰Ca with low-momentum potentials in CCSD(T); ^{40,48}Ca with bare chiral interactions

Results compatible for ¹⁶O but differences for ⁴⁰Ca, reduced w/ 4p4h Full CI and CC agree to better than 1% for ⁸He, ¹⁶O, ⁴⁰Ca Binding w/ SRG evolved N3LO interaction

Coupled Cluster for ⁴⁰Ca and ⁴⁸Ca

Ab-Initio Relations to DFT

Comparison of Basic DFT Ingredients:

one-body density matrix nearly diagonal (evolution w/ cutoff) two-body density matrix

Comparison of DFT Outputs: Must Agree

Energy, one-body densities External Fields: monopole, quadrupole isospin dependence general density perturbations

Neutron Matter/External Pot.

ab initio / DFT

Light Nuclei: A up to 12

nn interactions - ab-initio

ab-initio / ab-inito

Medium Nuclei: A from 16 to 56

nn interactions - ab initio

ab initio / DFT