
The Asynchronous
Dynamic Load-Balancing
Library

Rusty Lusk, Steve Pieper, Ralph Butler, Anthony Chan

Mathematics and Computer Science Division

Nuclear Physics Division

Argonne National Laboratory

2
Argonne National

Laboratory

Outline

 The Nuclear Physics problem - GFMC
 The CS problem: scalability, load balancing, simplicity for the

application
 Approach: a portable, scalable library, implementing a simple

programming model
 Status

– Choices made

– Lessons learned

– Promising results
 Plans

– Scaling up

– Branching out

– Using threads

so far…

3
Argonne National

Laboratory

The Physics Project: Green’s function
Monte Carlo (GFMC)
 The benchmark for nuclei with 12 or fewer nucleons
 Starts with variational wave function containing non-central correlations
 Uses imaginary-time propagation to filter out excited-state contamination

– Samples removed or multiplied during propagation -- work fluctuates

– Local energies evaluated every 40 steps
– For 12C expect ~10,000 Monte Carlo samples to be propagated for

~1000 steps
 Non ADLB version:

– Several samples per node; work on one sample not parallelized
 ADLB version:

– Three-body potential and propagator parallelized
– Wave functions for kinetic energy and two-body potential done in

parallel
– Can use many processors per sample

 Physics target: Properties of both ground and excited states of 12C

4
Argonne National

Laboratory

The Computer Science Project: ADLB

 Specific Problem: to scale up GFMC, a master/slave code
 General Problem: scaling up the master/slave paradigm in general

– Usually based on a single (or shared) data structure
 Goal for GFMC: scale to 160,000 processes (available on BG/P)
 General goal: provide simple yet scalable programming model for

algorithms parallelized via master/slave structure
 General goal in GFMC setting: eliminate (most) MPI calls from

GFMC and scale the general approach
 GFMC is not an easy case:

– Multiple types of work

– Any process can create work

– Large work units (multi-megabyte)

– Priorities and types used together to specify some sequencing
without constraining parallelism (“workflow”)

5
Argonne National

Laboratory

Master/Slave Algorithms and Load Balancing

 Advantages
– Automatic load balancing

 Disadvantages
– Scalability - master can become bottleneck

 Wrinkles
– Slaves may create new work
– Multiple work types and priorities that impose ordering

Master

Slave Slave Slave Slave Slave

Shared

Work queue

6
Argonne National

Laboratory

Load Balancing in GFMC Before ADLB

 Master/Slave algorithm
 Slaves do create work dynamically
 Newly created work stored locally
 Periodic load balancing

– Done by master

– Slaves communicate work queue lengths to master

– Master determines reallocation of work

– Master tells slaves to reallocate work

– Slaves communicate work to one another

– Computation continues with balanced work queues

7
Argonne National

Laboratory

GFMC Before ADLB

8
Argonne National

Laboratory

Zoomed in

9
Argonne National

Laboratory

BlueGene P

 4 cpus per node
 4 threads or processes per node
 160,000 cpus
 Efficient MPI communication
 Original GFMC not expected to continue to scale past 2000

processors

– More parallelism needed to exploit BG/P for Carbon 12

– Existing load-balancing mechanism will not scale
 A general-purpose load-balancing library should

– Enable GFMC to scale

– Be of use to other codes as well

– Simplify parallel programming of applications

10
Argonne National

Laboratory

The Vision

 No explicit master for load balancing; slaves make calls to ADLB
library; those subroutines access local and remote data structures
(remote ones via MPI).

 Simple Put/Get interface from application code to distributed work
queue hides most MPI calls
– Advantage: multiple applications may benefit

– Wrinkle: variable-size work units, in Fortran, introduce some
complexity in memory management

 Proactive load balancing in background
– Advantage: application never delayed by search for work from

other slaves
– Wrinkle: scalable work-stealing algorithms not obvious

11
Argonne National

Laboratory

The API (Application Programming
Interface)
 Basic calls

– ADLB_Init(num_servers, am_server, app_comm)
– ADLB_Server()
– ADLB_Put(type, priority, len, buf, answer_dest)
– ADLB_Reserve(req_types, work_handle, work_len, work_type,

work_prio, answer_dest)
– ADLB_Ireserve(…)A
– ADLB_Get_Reserved(…)
– ADLB_Set_done()
– ADLB_Finalize()

 A few others, for tuning and debugging
– (still at experimental stage)

12
Argonne National

Laboratory

Asynchronous Dynamic Load Balancing -
Thread Approach
 The basic idea:

Application

Threads

ADLB Library

Thread

Shared Memory

Put/get

MPI Communication
with other nodes

Work
queue

13
Argonne National

Laboratory

ADLB - Process ApproachAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Application Processes

ADLB Servers

put/get

14
Argonne National

Laboratory

Early Version of ADLB in GFMC on BG/L

15
Argonne National

Laboratory

History and Status

 Year 1: learned the application; worked out first version of API; did
thread version of implementation

 Year 2: Switched to process version, began experiments at scale

– On BG/L (4096), SiCortex (5800), and BG/P (16K so far)

– Variational Monte Carlo (part of GFMC)

– Full GFMC (see following performance graph)

– Latest: GFMC for neutron drop at large scale
 Some additions to the API for increased scalability, memory

management
 Internal changes to manage memory
 Still working on memory management for full GMFC with fine-grain

parallelism, needed for 12C
 Basic API not changing

16
Argonne National

Laboratory

Comparing Speedup

17
Argonne National

Laboratory

Most Recent Runs

 14-neutron drop on 16,384 processors of BG/P
 Speedup of 13,634 (83% efficiency)
 No microparallization since more configurations
 ADLB processes 171 million work packages of size 129KB each,

total of 20.5 terabytes of data moved
 Heretofore uncomputed level of accuracy for the computed energy

and density
 Also some benchmarking runs for 9Be and 7Li

18
Argonne National

Laboratory

Future Plans

 ShortS detour into scalable debugging tools for understanding
behavior, particularly memory usage

 Further microparallelization of GFMC using ADLB
 Scaling up on BG/P
 Revisit the thread model for ADLB implementation, particularly in

anticipation of Q and experimental compute-node Linux on P
 Help with multithreading the application (locally parallel execution of

work units via OpenMP)
 Work with others in the project who use manager/worker patterns in

their codes
 Work with others outside the project in other SciDACs

19
Argonne National

Laboratory

Summary

 We have designed a simple programming model for a class of
applications

 We are working on this in the context of a specific UNEDF
application, which is a challenging one

 We have done two implementations
 Performance results are promising so far
 Still have not completely conquered the problem
 Needed: tools for understanding behavior, particularly to help with

application-level debugging

20
Argonne National

Laboratory

The End

