
The Asynchronous
Dynamic Load-Balancing
Library

Rusty Lusk, Steve Pieper, Ralph Butler, Anthony Chan

Mathematics and Computer Science Division

Nuclear Physics Division

Argonne National Laboratory

2
Argonne National

Laboratory

Outline

 The Nuclear Physics problem - GFMC
 The CS problem: scalability, load balancing, simplicity for the

application
 Approach: a portable, scalable library, implementing a simple

programming model
 Status

– Choices made

– Lessons learned

– Promising results
 Plans

– Scaling up

– Branching out

– Using threads

so far…

3
Argonne National

Laboratory

The Physics Project: Green’s function
Monte Carlo (GFMC)
 The benchmark for nuclei with 12 or fewer nucleons
 Starts with variational wave function containing non-central correlations
 Uses imaginary-time propagation to filter out excited-state contamination

– Samples removed or multiplied during propagation -- work fluctuates

– Local energies evaluated every 40 steps
– For 12C expect ~10,000 Monte Carlo samples to be propagated for

~1000 steps
 Non ADLB version:

– Several samples per node; work on one sample not parallelized
 ADLB version:

– Three-body potential and propagator parallelized
– Wave functions for kinetic energy and two-body potential done in

parallel
– Can use many processors per sample

 Physics target: Properties of both ground and excited states of 12C

4
Argonne National

Laboratory

The Computer Science Project: ADLB

 Specific Problem: to scale up GFMC, a master/slave code
 General Problem: scaling up the master/slave paradigm in general

– Usually based on a single (or shared) data structure
 Goal for GFMC: scale to 160,000 processes (available on BG/P)
 General goal: provide simple yet scalable programming model for

algorithms parallelized via master/slave structure
 General goal in GFMC setting: eliminate (most) MPI calls from

GFMC and scale the general approach
 GFMC is not an easy case:

– Multiple types of work

– Any process can create work

– Large work units (multi-megabyte)

– Priorities and types used together to specify some sequencing
without constraining parallelism (“workflow”)

5
Argonne National

Laboratory

Master/Slave Algorithms and Load Balancing

 Advantages
– Automatic load balancing

 Disadvantages
– Scalability - master can become bottleneck

 Wrinkles
– Slaves may create new work
– Multiple work types and priorities that impose ordering

Master

Slave Slave Slave Slave Slave

Shared

Work queue

6
Argonne National

Laboratory

Load Balancing in GFMC Before ADLB

 Master/Slave algorithm
 Slaves do create work dynamically
 Newly created work stored locally
 Periodic load balancing

– Done by master

– Slaves communicate work queue lengths to master

– Master determines reallocation of work

– Master tells slaves to reallocate work

– Slaves communicate work to one another

– Computation continues with balanced work queues

7
Argonne National

Laboratory

GFMC Before ADLB

8
Argonne National

Laboratory

Zoomed in

9
Argonne National

Laboratory

BlueGene P

 4 cpus per node
 4 threads or processes per node
 160,000 cpus
 Efficient MPI communication
 Original GFMC not expected to continue to scale past 2000

processors

– More parallelism needed to exploit BG/P for Carbon 12

– Existing load-balancing mechanism will not scale
 A general-purpose load-balancing library should

– Enable GFMC to scale

– Be of use to other codes as well

– Simplify parallel programming of applications

10
Argonne National

Laboratory

The Vision

 No explicit master for load balancing; slaves make calls to ADLB
library; those subroutines access local and remote data structures
(remote ones via MPI).

 Simple Put/Get interface from application code to distributed work
queue hides most MPI calls
– Advantage: multiple applications may benefit

– Wrinkle: variable-size work units, in Fortran, introduce some
complexity in memory management

 Proactive load balancing in background
– Advantage: application never delayed by search for work from

other slaves
– Wrinkle: scalable work-stealing algorithms not obvious

11
Argonne National

Laboratory

The API (Application Programming
Interface)
 Basic calls

– ADLB_Init(num_servers, am_server, app_comm)
– ADLB_Server()
– ADLB_Put(type, priority, len, buf, answer_dest)
– ADLB_Reserve(req_types, work_handle, work_len, work_type,

work_prio, answer_dest)
– ADLB_Ireserve(…)A
– ADLB_Get_Reserved(…)
– ADLB_Set_done()
– ADLB_Finalize()

 A few others, for tuning and debugging
– (still at experimental stage)

12
Argonne National

Laboratory

Asynchronous Dynamic Load Balancing -
Thread Approach
 The basic idea:

Application

Threads

ADLB Library

Thread

Shared Memory

Put/get

MPI Communication
with other nodes

Work
queue

13
Argonne National

Laboratory

ADLB - Process ApproachAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Application Processes

ADLB Servers

put/get

14
Argonne National

Laboratory

Early Version of ADLB in GFMC on BG/L

15
Argonne National

Laboratory

History and Status

 Year 1: learned the application; worked out first version of API; did
thread version of implementation

 Year 2: Switched to process version, began experiments at scale

– On BG/L (4096), SiCortex (5800), and BG/P (16K so far)

– Variational Monte Carlo (part of GFMC)

– Full GFMC (see following performance graph)

– Latest: GFMC for neutron drop at large scale
 Some additions to the API for increased scalability, memory

management
 Internal changes to manage memory
 Still working on memory management for full GMFC with fine-grain

parallelism, needed for 12C
 Basic API not changing

16
Argonne National

Laboratory

Comparing Speedup

17
Argonne National

Laboratory

Most Recent Runs

 14-neutron drop on 16,384 processors of BG/P
 Speedup of 13,634 (83% efficiency)
 No microparallization since more configurations
 ADLB processes 171 million work packages of size 129KB each,

total of 20.5 terabytes of data moved
 Heretofore uncomputed level of accuracy for the computed energy

and density
 Also some benchmarking runs for 9Be and 7Li

18
Argonne National

Laboratory

Future Plans

 ShortS detour into scalable debugging tools for understanding
behavior, particularly memory usage

 Further microparallelization of GFMC using ADLB
 Scaling up on BG/P
 Revisit the thread model for ADLB implementation, particularly in

anticipation of Q and experimental compute-node Linux on P
 Help with multithreading the application (locally parallel execution of

work units via OpenMP)
 Work with others in the project who use manager/worker patterns in

their codes
 Work with others outside the project in other SciDACs

19
Argonne National

Laboratory

Summary

 We have designed a simple programming model for a class of
applications

 We are working on this in the context of a specific UNEDF
application, which is a challenging one

 We have done two implementations
 Performance results are promising so far
 Still have not completely conquered the problem
 Needed: tools for understanding behavior, particularly to help with

application-level debugging

20
Argonne National

Laboratory

The End

